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ci_binom Proportion CI: Binary Variable (2 groups)
Description

Calculates confidence intervals (CI) for proportions in binary variables. This enhanced version of
DescTools: :BinomCI() returns a data frame.

Usage
ci_binom(x, n, method = "modified wilson”, conf.level = 0.95, ...)
Arguments
X Number of events of interest or favorable outcomes.
n Total number of events.
method Calculation method: "modified wilson”, "wilson”, "agresti-coull”, and
others. See DescTools: :BinomCI () documentation.
conf.level Confidence level. Default: 0.95.
Additional parameters for DescTools: :BinomCI(). See the documentation for
that function.
Details

Similar to DescTools: :BinomCI(), but uses the modified Wilson method by default and returns a
data frame instead of a vector, enabling plotting with ggplot2.

Value

A data frame with columns:

* est (<dbl>) — proportion estimate;
e lwr.ci, upr.ci (<dbl>) — lower and upper CI bounds;
¢ X (<int>) — number of events of interest;

¢ n (<int>) — total number of events.
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Examples

# Example 1: Survey responses

# 54 out of 8@ people agree with a statement

# What is the true proportion of agreement in the population?
ci_binom(x = 54, n = 80)

# Interpretation: We're 95% confident the true proportion

# is between lwr.ci and upr.ci (roughly ©.57 to 0.78)

# Example 2: Medical treatment success
# 23 out of 3@ patients recovered
ci_binom(x = 23, n = 30)

# Example 3: Coin flips

# Testing if a coin is fair: 58 heads in 100 flips
ci_binom(x = 58, n = 100)

# If 0.5 is in the CI, we can't rule out the coin being fair

# Example 4: Effect of sample size

# Same proportion (54/80 is approximately 0.675) but different sample sizes
ci_binom(x = 54, n = c(80, 100, 200, 500))

# Notice: Larger samples give narrower (more precise) CIs

# Example 5: Two separate groups

# Group A: 23 successes, Group B: 45 successes
successes <- c(23, 45)

ci_binom(successes, n = sum(successes))

# Example 6: Student exam pass rates
# 67 out of 85 students passed
ci_binom(x = 67, n = 85)

# Example 7: Different confidence levels
# 90% confidence (narrower interval, less confident)
ci_binom(x = 54, n = 80, conf.level = 0.90)

# 99% confidence (wider interval, more confident)
ci_binom(x = 54, n = 80, conf.level = 0.99)

# Example 8: Comparing different methods

ci_binom(x = 15, n = 25, method = "wilson")

ci_binom(x = 15, n = 25, method = "agresti-coull”)

# Different methods can give slightly different results

ci_boot Confidence Intervals via Bootstrap

Description

Calculates confidence intervals (CI) using bootstrap methods. This enhanced version of DescTools: :BootCI()
returns a data frame.
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Usage
ci_boot(.data, x, y = NULL, conf.level = 0.95, ...)
Arguments
.data Data frame.
X,y Column names (unquoted).
conf.level Confidence level. Default: 0.95.
Additional parameters for DescTools: :BootCI(), including:
1. FUN — function for which CI is calculated;
2. bci.method — interval method:
* "perc"” — percentile method,
e "bca" —bias-corrected and accelerated (BCa) method (see note below),
¢ others;
3. R —number of replications, typically 1,000 to 10,000.
Details

Similar to DescTools: :BootCI(), but:

* First argument is a data frame;

e Arguments x and y are unquoted column names;

* Responds to dplyr: :group_by() for subgroup calculations;

* Returns a data frame for convenient plotting with ggplot2.

Value

A data frame with confidence intervals. Columns depend on arguments and grouping:

Note

(if grouped) grouping variable names;
Column matching the statistic name (from FUN) containing the estimate;

lwr.ci, upr.ci —lower and upper CI bounds.

Notes:

1.
2.
3.

Each group should have at least 20 observations for bootstrap methods.
Use set.seed() for reproducible results.

If using bci.method = "bca” produces the warning "extreme order statistics used as endpoints”,
the BCa method is unsuitable; use "perc” instead (https://rcompanion.org/handbook/E_
04.html).


https://rcompanion.org/handbook/E_04.html
https://rcompanion.org/handbook/E_04.html
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Examples

# Bootstrap is useful when:

# - Data is skewed (not normal)

# - You want CI for statistics other than the mean (e.g., median, SD)
# - You don't want to assume a specific distribution

data(iris, package = "datasets"”)
head(iris)

set.seed(123) # For reproducible results
# Example 1: CI for the median (resistant to outliers)
iris |>
ci_boot(Petal.Length, FUN = median, R = 1000, bci.method = "perc")
# Compare to mean CI - median is often more robust

# Example 2: CI for the median by group
iris |>

dplyr::group_by(Species) |>

ci_boot(Petal.Length, FUN = median, R = 1000, bci.method = "perc")
# Useful when groups have different distributions

# Example 3: CI for standard deviation
# How variable is petal length?
set.seed(456)
iris |>
ci_boot(Petal.Length, FUN = sd, R = 1000, bci.method = "perc")

# Example 4: CI for interquartile range (IQR)
# IQR = 75th percentile - 25th percentile
set.seed(789)
iris |>
ci_boot(Petal.Length, FUN = IQR, R = 1000, bci.method = "perc")

# Example 5: CI for correlation coefficient (Pearson's r)
# How related are petal length and width?
set.seed(101)
iris |>
dplyr::group_by(Species) |>
ci_boot(
Petal.Length, Petal.Width,
FUN = cor, method = "pearson”,
R = 1000, bci.method = "perc”
)

# Look for CIs that don't include @ (suggests real correlation)

# Example 6: Comparing BCa and percentile methods

set.seed(111)

# BCa method (often more accurate but requires more assumptions)

iris |> ci_boot(Petal.Length, FUN = median, R = 1000, bci.method = "bca")

# Percentile method (simpler, more robust)
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iris |> ci_boot(Petal.Length, FUN = median, R = 1000, bci.method = "perc")

# Example 7: Effect of number of bootstrap replications
set.seed(222)

# Fewer replications (faster but less stable)
iris |> ci_boot(Petal.Length, FUN = median, R

500, bci.method = "perc"”)

# More replications (slower but more stable)
iris |> ci_boot(Petal.Length, FUN = median, R = 5000, bci.method = "perc")
# For teaching: 1000 is usually enough; for research: 5000-10000

# Example 8: Handling missing values
set.seed(333)
iris |>
ci_boot(
Petal.Length,
FUN = median, na.rm = TRUE,
R = 1000, bci.method = "bca”
)

# Example 9: With mtcars dataset
set.seed(444)
data(mtcars, package = "datasets")
mtcars |>
dplyr::group_by(cyl) [|>
ci_boot(mpg, FUN = median, R = 1000, bci.method = "perc")
# Compare median MPG for different cylinder counts

# Example 10: Spearman correlation (rank-based, robust to outliers)
set.seed(555)

iris |>
dplyr: :group_by(Species) |>
ci_boot(
Petal.Length, Petal.Width,
FUN = cor, method = "spearman”,
R = 1000, bci.method = "perc”
)
ci_mean_t Mean CI from Data
Description

ci_mean_t() calculates the mean’s confidence interval (CI) using the classic formula with Stu-
dent’s t coefficient for data in data frame format. This enhanced version of DescTools: :MeanCI ()
responds to dplyr: :group_by (), enabling subgroup calculations. Result is a data frame.

Usage

ci_mean_t(.data, x, conf.level = 0.95, ...)
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Arguments
.data Data frame.
X Column name (unquoted).
conf.level Confidence level. Default: 0.95.
Additional parameters for DescTools: :MeanCI(). See that function’s docu-
mentation.
Value

A data frame with columns:

* (if present) grouping variable names;
¢ mean (<dbl>) — mean estimate;

e lwr.ci, upr.ci (<dbl>) — lower and upper CI bounds.

Examples

# Example with built-in dataset
data(npk, package = "datasets"”)
head(npk)

# Basic CI calculation for crop yield

ci_mean_t(npk, yield)

# Interpretation: We're 95% confident the true mean yield
# falls between lwr.ci and upr.ci

# Using pipe operator (tidyverse style)
npk |> ci_mean_t(yield)

# Compare yields with nitrogen (N) treatment vs. without
npk |>
dplyr::group_by(N) |>
ci_mean_t(yield)
# Look at the CIs: Do they overlap? Non-overlapping CIs suggest
# a potential difference between groups

# More complex grouping: Three factors at once
npk |>

dplyr::group_by(N, P, K) |>

ci_mean_t(yield)

# Example with iris dataset: Petal length by species
data(iris, package = "datasets")
iris |>
dplyr::group_by(Species) |>
ci_mean_t(Petal.Length)
# Notice how the three species have clearly different intervals

# Example with mtcars: MPG by number of cylinders
data(mtcars, package = "datasets")
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mtcars |>
dplyr::group_by(cyl) [>
ci_mean_t(mpg)

# 90% confidence interval (less confident, narrower interval)
npk |> ci_mean_t(yield, conf.level = 0.90)

# 99% confidence interval (more confident, wider interval)
npk |> ci_mean_t(yield, conf.level = 0.99)

ci_mean_t_stat Mean CI from Descriptive Statistics

Description

ci_mean_t_stat() calculates the mean’s confidence interval (CI) using the classic formula with
Student’s t coefficient when descriptive statistics (mean, standard deviation, sample size) are pro-
vided. Useful when these values are reported in scientific literature.

Usage

ci_mean_t_stat(mean_, sd_, n, group = "", conf.level = 0.95)
Arguments

mean_ Vector of group means.

sd_ Vector of group standard deviations.

n Vector of group sizes.

group Group name. Default: empty string ("").

conf.level Confidence level. Default: 0.95.
Value

A data frame with columns:

* group (<fct>) — group name;

¢ mean (<dbl>) — mean estimate;

¢ lwr.ci (<dbl>) —lower CI bound (Iwr. = lower);
* upr.ci (<dbl>) — upper CI bound (upr. = upper);
¢ sd (<dbl>) — standard deviation;

* n (<int>) — sample/group size.

Calculations can be performed for multiple groups simultaneously.
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Note

Each of mean_, sd_, n, group must have length (a) of one value, or (b) matching the longest vector
in this argument group.

See examples for clarification.

Examples

# Basic example: Test scores
# Suppose a class of 25 students has a mean score of 75 with SD of 10
ci_mean_t_stat(mean_ = 75, sd_ = 10, n = 25)

# The result tells us we can be 95% confident that the true mean score
# lies between the lower and upper CI bounds

# Example from literature: A study reports mean = 362, SD = 35, n = 100
ci_mean_t_stat(mean_ = 362, sd_ = 35, n = 100)

# Without argument names (order matters: mean, sd, n):
ci_mean_t_stat(362, 35, 100)

# Comparing multiple groups

(e.g., teaching methods):
# Method A: mean = 78, SD = 8, n

7, n

9, n

30 students
28 students
32 students

# Method B: mean = 82, SD
# Method C: mean = 75, SD
mean_val <- c(78, 82, 75)
std_dev <- c(8, 7, 9
n <- c(30, 28, 32)
group <- c("Method A", "Method B", "Method C")

ci_mean_t_stat(mean_val, std_dev, n, group)

# Educational example: Effect of sample size on CI width

# Same mean and SD, but different sample sizes

ci_mean_t_stat(mean_ = 75, sd_ = 10, n = c(10, 25, 50, 100))

# Notice: Larger samples give narrower (more precise) confidence intervals

# Educational example: Changing confidence level (default is 95%)
ci_mean_t_stat(mean_ = 75, sd_ = 10, n = 25, conf.level = 0.99)
# 99% CI is wider than 95% CI (more confident = less precise)

# NOTE: Changing conf.level just to get narrower CI is a BAD PRACTICE!

# Please choose confidence level based on study design, not desired CI width.

# To display more decimal places, convert tibble to data frame:
result_ci <- ci_mean_t_stat(75, 10, 25)
as.data.frame(result_ci)

# Or use:
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# View(result_ci)

ci_multinom Proportion CI: Multinomial Variable (3 or more groups)

Description

Calculates simultaneous confidence intervals (CI) for proportions in multinomial variables (k >=
3). This enhanced version of DescTools: :MultinomCI () returns a data frame.

Usage
ci_multinom(
X y
method = "goodman”,
conf.level = 0.95,
gr_colname = "group",
)
Arguments
X Vector of group sizes. Best if elements have meaningful names (see examples).
method Calculation method: "goodman”, "sisonglaz”, "cplus1”, and others. See
DescTools: :MultinomCI() documentation.
conf.level Confidence level. Default: 0.95.
gr_colname Column name (quoted) for group names. Default: "group”.
Additional parameters for DescTools: :MultinomCI().
Details

Similar to DescTools: :MultinomCI(), but uses the Goodman method by default and returns a data
frame, enabling convenient plotting with ggplot2.

Value

A data frame with columns:

* group or user-specified name (<fct>) — group names;

est (<dbl>) — proportion estimate;
e lwr.ci, upr.ci (<dbl>) — lower and upper CI bounds;
e x (<int>) — group size;

¢ n (<int>) — total number of events.
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Examples

# Example 1: Student grade distribution

# A: 20 students, B: 35 students, C: 25 students, D/F: 15 students
grades <- c("A" = 20, "B" = 35, "C" = 25, "D/F" = 15)
ci_multinom(grades)

# Each row shows the CI for that grade's proportion

# Example 2: Transportation preferences
transport <- c("Car"” = 45, "Bus" = 30, "Bike" = 15, "Walk" = 20)
ci_multinom(transport)

# Example 3: Blood type distribution
blood_types <- c("0" = 156, "A" = 134, "B" = 38, "AB" = 22)
ci_multinom(blood_types)

# Example 4: Political party preference
parties <- c("Party A" = 380, "Party B" = 420, "Party C" = 200)
ci_multinom(parties)

# Unnamed frequencies (groups will be numbered)
ci_multinom(c(20, 35, 54))

# Using pipe operator
c(”"Small” = 20, "Medium” = 35, "Large" = 54) |>
ci_multinom()

# Different method for simultaneous intervals
c("Small” = 33, "Medium” = 35, "Large" = 30) |>
ci_multinom(method = "sisonglaz")

# Custom column name for groups
c("Dog" = 65, "Cat" = 48, "Bird" = 22, "Other"” = 15) |>
ci_multinom(gr_colname = "pet_type")

# Example 5: Teaching method effectiveness

# Outcome categories: Poor, Fair, Good, Excellent

outcomes <- c("Poor” = 8, "Fair" = 22, "Good" = 45, "Excellent” = 35)
ci_multinom(outcomes)

# Look for non-overlapping CIs to identify categories that differ significantly
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