Version: | 1.1.0 |
Title: | Alternative Estimators to Adjusted R-Squared |
Description: | Provides alternatives to the normal adjusted R-squared estimator for the estimation of the multiple squared correlation in regression models, as fitted by the lm() function. The alternative estimators are described in Karch (2020) <doi:10.1525/collabra.343>. |
Depends: | R (≥ 3.5.0) |
Imports: | gsl (≥ 1.9-10.3), methods, purrr (≥ 0.3.2) |
Suggests: | testthat (≥ 2.1.0), MASS (≥ 7.3-51.1) |
License: | GPL-2 |
URL: | https://github.com/karchjd/altR2 |
BugReports: | https://github.com/karchjd/altR2/issues |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2024-09-02 13:49:20 UTC; karch |
Author: | Julian Karch [aut, cre] |
Maintainer: | Julian Karch <j.d.karch@fsw.leidenuniv.nl> |
Repository: | CRAN |
Date/Publication: | 2024-09-02 22:30:02 UTC |
Obtain estimates of the multiple squared correlation
Description
Returns different estimates of the multiple squared correlation.
Usage
altR2(lmOut)
Arguments
lmOut |
object of class "lm" as returned by the function |
Value
A named vector with the different estimates
Examples
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
estimates <- altR2(lm.D9)
Obtain estimates of the multiple squared correlation
Description
Returns different estimates of the multiple squared correlation.
Usage
estimate_adj_R2(Rsquared, N, p)
Arguments
Rsquared |
R-squared value |
N |
Number of observations |
p |
Number of predictors |
Value
A named vector with the different estimates
Examples
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
estimates <- estimate_adj_R2(summary(lm.D9)$r.squared, length(weight), 1)