Package 'ViSe'

April 22, 2024

Type Package
Title Visualizing Sensitivity
Version 0.1.2
Depends R (>=3.1.0)
Imports stats, ggplot2, methods, dplyr, tidyr, scales, cowplot, shiny
Maintainer Erin M. Buchanan buchananlab@gmail.com
Description Designed to help the user to determine the sensitivity of an proposed causal effect to unconsidered common causes. Users can create visualizations of sensitivity, effect sizes, and determine which pattern of effects would support a causal claim for between group differences. Number needed to treat formula from Kraemer H.C. \& Kupfer D.J. (2006) doi:10.1016/j.biopsych.2005.09.014.

License LGPL-3
Encoding UTF-8
RoxygenNote 7.3.1
URL http://www.aggieerin.com/ViSe/
Suggests knitr, rmarkdown, plotly
VignetteBuilder knitr
Collate 'globals.R' 'adjusted_coef.R' 'apa.R' 'big_donut.R'
'calculate_d.R' 'd_to_f2.R' 'd_to_nnt.R' 'd_to_r.R'
'estimate_d.R' 'estimate_r.R' 'noncentral_t.R' 'other_to_d.R'
'probability_superiority.R' 'proportion_overlap.R' 'runExample.R' 'visualize_c.R' 'visualize_c_map.R' 'visualize_effects.R'

NeedsCompilation no
Author Erin M. Buchanan [aut, cre] (https://orcid.org/0000-0002-9689-4189)
Repository CRAN
Date/Publication 2024-04-22 14:32:33 UTC

R topics documented:

adjusted_coef 2
apa 3
calculate_d 3
d_to_f2 6
d_to_nnt 7
d_to_r 7
estimate_d 8
estimate_r 9
other_to_d 9
probability_superiority 10
proportion_overlap 12
runExample 13
visualize_c 13
visualize_c_map 14
visualize_effects 15
Index 16
adjusted_coef Adjust coefficient for confounders

Description

This function calculates the adjusted effect after controlling for confounding effects. You can use d values or standardized regression coefficients.

Usage

adjusted_coef(effect_xz, effect_uxz, effect_d)

Arguments

effect_xz	Effect of x on y given z
effect_uxz	Effect of u on y given x and z
effect_d	Effect size difference of interest

Value

Adjusted effect size of x on y given u and z

Examples

```
adjusted_coef(effect_xz = .2,
    effect_uxz = .4,
    effect_d = .12)
```


Description

A function that formats decimals and leading zeroes for creating reports in scientific style.

Usage

apa(value, decimals = 3, leading = TRUE)

Arguments

value A set of numeric values, either a single number, vector, or set of columns.
decimals The number of decimal points desired in the output.
leading Logical value: TRUE for leading zeroes on decimals and FALSE for no leading zeroes on decimals. The default is TRUE.

Details

This function creates "pretty" character vectors from numeric variables for printing as part of a report. The value can take a single number, matrix, vector, or multiple columns from a data frame, as long as they are numeric. The values will be coerced into numeric if they are characters or logical values, but this process may result in an error if values are truly alphabetical.

Value

Returns a nicely formatted character vector for numbers for reporting purposes.

Examples

apa(value $=0.54674$, decimals $=3$, leading $=$ TRUE)
calculate_d d_s for Between Subjects with Pooled SD Denominator

Description

This function displays d for two between subjects groups and gives the central and non-central confidence interval using the pooled standard deviation as the denominator.

Usage

```
    calculate_d(
        m1 = NULL,
        m2 = NULL,
        sd1 = NULL,
        sd2 = NULL,
        n1 = NULL,
        n2 = NULL,
        \(\mathrm{t}=\mathrm{NULL}\),
        model = NULL,
        df = NULL,
        x_col = NULL,
        y_col = NULL,
        \(\mathrm{d}=\) NULL ,
        \(a=0.05\),
        lower = TRUE
    )
```


Arguments

m1
m2

sd1

sd2

n1
n2
t
model
df
x_col
$y_{\text {_col }}$ name of the column that contains the dependent score OR a numeric vector of group 2 scores
d
a
lower
mean group one
mean group two
standard deviation group one
standard deviation group two
sample size group one
sample size group two
optional, calculate d from independent t , you must include n 1 and n 2 for degrees of freedom
optional, calculate d from t.test for independent t , you must still include n 1 and n2
optional dataframe that includes the x _col and y_{-}col
name of the column that contains the factor levels OR a numeric vector of group 1 scores
a previously calculated d value from a study
significance level
Use this to indicate if you want the lower or upper bound of d for one sided confidence intervals. If d is positive, you generally want lower $=$ TRUE, while negative d values should enter lower $=$ FALSE for the upper bound that is closer to zero.

Details

To calculate d_{s}, mean two is subtracted from mean one and divided by the pooled standard deviation.

$$
d_{s}=\frac{M_{1}-M_{2}}{S_{\text {pooled }}}
$$

You should provide one combination of the following:
1: m1 through n2
2: $\mathrm{t}, \mathrm{n} 1, \mathrm{n} 2$
3: model, n1, n2
4: df, "x_col", "y_col"
5: $\mathrm{x} _$col, $\mathrm{y} _$col as numeric vectors
6: d, n1, n2
You must provide alpha and lower to ensure the right confidence interval is provided for you.

Value

Provides the effect size (Cohen's ${ }^{*} \mathrm{~d}^{*}$) with associated central and non-central confidence intervals, the ${ }^{2} *$-statistic, the confidence intervals associated with the means of each group, as well as the standard deviations and standard errors of the means for each group. The one-tailed confidence interval is also included for sensitivity analyses.

d	effect size
dlow	noncentral lower level confidence interval of d value
dhigh	noncentral upper level confidence interval of d value
dlow_central	central lower level confidence interval of d value
dhigh_central	central upper level confidence interval of d value
done_low	noncentral lower bound of one tailed confidence interval
done_low_central	
	central lower bound of one tailed confidence interval
M1	mean of group one
sd1	standard deviation of group one mean
se1	lower level confidence interval of group one mean
M1low	upper level confidence interval of group one mean
M1high	mean of group two
M2	standard deviation of group two mean
sd2	standard error of group two mean
se2	lower level confidence interval of group two mean
M2low	upper level confidence interval of group two mean
M2high	pooled standard deviation

sepooled	pooled standard error
n 1	sample size of group one
n 2	sample size of group two
df	degrees of freedom $(\mathrm{n} 1-1+\mathrm{n} 2-1)$
t	t -statistic
p	p -value
estimate	the d statistic and confidence interval in APA style for markdown printing
statistic	the t-statistic in APA style for markdown printing

Examples

```
calculate_d(m1 = 14.37, # neglect mean
    sd1 = 10.716, # neglect sd
    n1 = 71, # neglect n
    m2 = 10.69, # none mean
    sd2 = 8.219, # none sd
    n2 = 3653, # none n
    a = .05, # alpha/confidence interval
    lower = TRUE) # lower or upper bound
```

d_to_f2 Convert d to Cohen's f

Description

This function allows you to convert d to Cohen's f and f^{2} statistics.

Usage

d_to_f2(d)

Arguments

d
the effect size to convert

Value

Both Cohen's f and $f^{\wedge} 2$ statistics
$f \quad d$ values translated into f
f2 $\quad \mathrm{d}$ values translated into f^{2}

Examples

d_to_f2(.25)

Description

This function calculates the number needed to treat from continuous measures (Cohen's d) using Kraemer and Kupfer (2006) formula.

Usage

d_to_nnt(d = NULL)

Arguments

d the effect size

Value

nnt values from d

References

Kraemer H.C., Kupfer D.J. (2006) Size of treatment effects and their importance to clinical research and practice. Biolological Psychiatry, 59, 990-996. https://doi.org/10.1016/j.biopsych.2005.09.014

Examples

d_to_nnt (d = . 25)

d_to_r
 Convert d to correlation coefficient

Description

This function allows you to convert d to Pearson's correlation coefficient.

Usage

d_to_r (d)

Arguments

d
the effect size to convert

Value

correlation coefficient

Examples

```
    d_to_r(.25)
```

```
estimate_d Visualization for Estimating d_s
```


Description

This function displays a visualization of effect sizes.

Usage

$$
\begin{aligned}
& \text { estimate_d(} \\
& \text { m1 }=\mathrm{NULL}, \\
& \mathrm{~m} 2=\mathrm{NULL}, \\
& \mathrm{sd} 1=\mathrm{NULL}, \\
& \mathrm{sd} 2=\mathrm{NULL}, \\
& \mathrm{n} 1=\mathrm{NULL}, \\
& \mathrm{n} 2=\mathrm{NULL}, \\
& \mathrm{~d}=\mathrm{NULL}
\end{aligned}
$$

Arguments

$m 1$	mean from first group
m2	mean from second group
sd1	standard deviation from first group
sd2	standard deviation from second group
n1	sample size for first group
n2	sample size for the second group
d	estimate of the effect size

Value

Returns a pretty graph
d
effect size
graph A graph of the distributions of the effect size
estimate_r

Examples

```
estimate_d(d = .25)
estimate_d(m1 = 10, m2 = 8, sd1 = 5, sd2 = 4,
    n1 = 100, n2 = 75)
```

 estimate_r Visualization for Estimating r

Description

This function displays a visualization of effect sizes.

Usage

estimate_r(r = NULL)

Arguments

$r \quad a$ correlation to visualize

Value

Returns a pretty graph
graph A graph of the effect size

Examples

```
    estimate_r(r = .4)
```

 other_to_d Convert other statistics to d

Description

This function allows you to convert other effect sizes to d including f, f squared, number needed to treat, correlation coefficient, probability of superiority, proportion overlap (u1, u2, u3, and proportion distribution overlap). Please note these are approximations.

Usage

other_to_d(
$f=$ NULL ,
f2 = NULL,
nnt $=$ NULL,
$r=$ NULL,
prob $=$ NULL ,
prop_u1 = NULL,
prop_u2 = NULL,
prop_u3 = NULL, prop_overlap = NULL
)

Arguments

f	Cohen's f
f2	Cohen's f squared
nnt	Number needed to treat
r	Correlation coefficient
prob	Probability superiority
prop_u1	Proportion Overlap U1
prop_u2	Proportion Overlap U2
prop_u3	Proportion Overlap U3
prop_overlap	Proportion Overlap of Distributions

Value

d effect size

Examples

other_to_d(f = .1)

```
    probability_superiority
```

Probability of Superiority Calculation

Description

This function calculates the probability of superiority from independent samples Cohen's d calculation.

```
Usage
    probability_superiority(
        d = NULL,
        m1 = NULL,
        m2 = NULL,
        sd1 = NULL,
        sd2 = NULL,
        n1 = NULL,
        n2 = NULL,
        a = 0.05,
        t = NULL,
        model = NULL,
        df = NULL,
        x_col = NULL,
        y_col = NULL
    )
```


Arguments

d
m1 mean group one
$\mathrm{m} 2 \quad$ mean group two
sd1 standard deviation group one
sd2 standard deviation group two
n1 sample size group one
n2 sample size group two
a
t optional, calculate d from independent t , you must include n 1 and n 2 for degrees of freedom
model optional, calculate d from t .test for independent t , you must still include n 1 and n2
df optional dataframe that includes the x_col and y_col
$x _$col name of the column that contains the factor levels OR a numeric vector of group 1 scores
y_col name of the column that contains the dependent score OR a numeric vector of group 2 scores

Details

You should provide one combination of the following:
1: d
2: m 1 through n 2
3: $\mathrm{t}, \mathrm{n} 1, \mathrm{n} 2$
4: model, n1, n2

5: df, "x_col", "y_col"
6: x_col, y_col as numeric vectors

Value

The probability of superiority.

Examples

```
probability_superiority(d = .25)
```

```
proportion_overlap Proportion Overlap Calculations for Cohen's d
```


Description

This function calculates the proportion overlap from two independent group d effect size calculations. Cohen's u1, u2, u3 and proportion overlap are provided.

Usage

proportion_overlap(
model = NULL,
x_col = NULL,
y_col = NULL,
df = NULL,
$d=$ NULL
)

Arguments

model	a saved independent $t-t e s t ~ m o d e l ~$ name of the column that contains the factor levels OR a numeric vector of group 1 scores		
y_col	name of the column that contains the dependent score OR a numeric vector of group 2 scores		
optional dataframe that includes the $x _c o l ~ a n d ~ y _c o l ~$		\quad	previously calculated d value
:---			

Value

A list of the following:

u1	Proportion of non-overlap across both distributions
u2	Proportion that one group is more than the same proportion in the other group
u3	Proportion of one group that is smaller than the median of the other group
p_o	Proportional overlap of distributions

Examples

```
    proportion_overlap(d = .25)
```

 runExample
 Run Shiny App

Description

This function is a convenience function to help you easily run the shiny app for the package.

Usage

runExample()

Value

Opens the shiny app version of the package to use interactively.
visualize_c Visualization for Estimating c Bias

Description

This function displays a visualization of the possible bias c that allows for a non-zero effect in sensitivity.

Usage

visualize_c(dlow, lower = TRUE)

Arguments

dlow The lower limit of the possible effect size
lower Use this to indicate if you want the lower or upper bound of d for one sided confidence intervals. If d is positive, you generally want lower = TRUE, while negative d values should enter lower = FALSE for the upper bound that is closer to zero.

Value

Returns a pretty graph
graph The graph of possible values for c

Examples

```
visualize_c(dlow = . 25, lower = TRUE)
```

visualize_c_map Visualization for Estimating c Bias + Estimates

Description

This function displays a visualization of the possible bias c that allows for a non-zero effect in sensitivity. This function includes the ability to add values of effect size and correlation to see how they map onto the proposed c value.

Usage

```
    visualize_c_map(
        dlow,
        r_values,
        d_values = NULL,
        f_values = NULL,
        f2_values = NULL,
        nnt_values = NULL,
        prob_values = NULL,
        prop_u1_values = NULL,
        prop_u2_values = NULL,
        prop_u3_values = NULL,
        prop_overlap_values = NULL,
        lower = TRUE
    )
```


Arguments

dlow The lower limit of the possible effect size (required).
r _values A vector of correlation values that are possible (required).
d_values A vector of effect size values that are possible.
f_values A vector of f effect size values that are possible.
f2_values A vector of f 2 effect size values that are possible.
nnt_values A vector of number needed to treat effect size values that are possible.
prob_values A vector of probability of superiority effect size values that are possible.
prop_u1_values A vector of proportion of overlap u1 effect size values that are possible.
prop_u2_values A vector of proportion of overlap u2 effect size values that are possible.
prop_u3_values A vector of proportion of overlap u3 effect size values that are possible.

```
prop_overlap_values
```

A vector of proportion of distribution overlap effect size values that are possible.
lower Use this to indicate if you want the lower or upper bound of d for one sided confidence intervals. If d is positive, you generally want lower $=$ TRUE, while negative d values should enter lower $=$ FALSE for the upper bound that is closer to zero (required).

Value

Returns a pretty graph of the possible effect size and correlation combinations with the region of effect colored in. Note that all effect sizes are converted to d for the graph.
graph The graph of possible values for c

Examples

```
visualize_c_map(dlow = .25,
    d_values = c(.2, .3, .8),
    r_values = c(.1, .4, .3),
    lower = TRUE)
```

```
visualize_effects Visualization for Conversions of Effect Sizes
```


Description

This function displays a visualization the same effect in various effect sizes including $\mathrm{d}, \mathrm{f}, f^{2}$, proportion overlap, correlation, number needed to treat, and more.

Usage

visualize_effects(d)

Arguments

d d effect size to convert to other numbers

Value

Returns a pretty graph of all the effects
graph ggplot object of converted effect sizes

Examples

visualize_effects(d = . 25)

Index

```
* APA
    apa, }
* between-subjects
    calculate_d, 3
* cohen's
    adjusted_coef,2
    d_to_f2,6
    d_to_r,7
    other_to_d,9
* convert
    d_to_f2,6
    d_to_r,7
    other_to_d, 9
* correlation
    adjusted_coef,2
    d_to_r, }
* decimals
    apa, }
* dependent
    adjusted_coef, 2
* deviation
    calculate_d, 3
*d
    adjusted_coef, 2
    d_to_f2,6
    d_to_r, 7
    other_to_d, 9
* effect
    adjusted_coef,2
    calculate_d, 3
    d_to_f2,6
    d_to_r,7
    estimate_d,8
    estimate_r,9
    other_to_d,9
    probability_superiority,10
    proportion_overlap,12
    visualize_c, 13
    visualize_c_map,14
```

visualize_effects, 15

* estimation
estimate_d, 8
estimate_r, 9
visualize_c, 13
visualize_c_map, 14
visualize_effects, 15
* formatting
apa, 3
* f
d_to_f2, 6
* ggplot
estimate_d, 8
estimate_r, 9
visualize_c, 13
visualize_c_map, 14
visualize_effects, 15
* independent
calculate_d, 3
* measures adjusted_coef, 2
$*$ of probability_superiority, 10
* overlap
proportion_overlap, 12
* paired-sample adjusted_coef, 2
* pooled calculate_d, 3
* probability probability_superiority, 10
* proportion
proportion_overlap, 12
* repeated
adjusted_coef, 2
* sd calculate_d, 3
* size
adjusted_coef, 2

```
    calculate_d, 3
    d_to_f2,6
    d_to_r, 7
    estimate_d, 8
    estimate_r,9
    other_to_d, 9
    probability_superiority,10
    proportion_overlap, 12
    visualize_c, 13
    visualize_c_map,14
    visualize_effects, 15
* squared
    d_to_f2,6
* standard
    calculate_d, 3
* superiority
    probability_superiority,10
* t-test
    adjusted_coef, 2
* t
    calculate_d, 3
* u1
    proportion_overlap,12
* u2
    proportion_overlap,12
* u3
    proportion_overlap,12
* visualization
    estimate_d, 8
    estimate_r,9
    visualize_c, 13
    visualize_c_map,14
    visualize_effects, 15
adjusted_coef,2
apa, 3
calculate_d, 3
d_to_f2,6
d_to_nnt,7
d_to_r, 7
estimate_d,8
estimate_r,9
other_to_d, 9
probability_superiority,10
proportion_overlap,12
```

