
Package ‘Thresher’
April 28, 2024

Version 1.1.4

Date 2024-04-26

Title Threshing and Reaping for Principal Components

Author Kevin R. Coombes

Maintainer Kevin R. Coombes <krc@silicovore.com>

Description Defines the classes used to identify
outliers (threshing) and compute the number of significant principal
components and number of clusters (reaping) in a joint application
of PCA and hierarchical clustering. See Wang et al., 2018,
<doi:10.1186/s12859-017-1998-9>.

Depends R (>= 3.1), ClassDiscovery, PCDimension

Imports methods, stats, graphics, grDevices, MASS, colorspace, movMF,
ade4, oompaBase

Suggests NbClust

License Apache License (== 2.0)

biocViews Clustering

URL http://oompa.r-forge.r-project.org/

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-28 16:00:05 UTC

R topics documented:
generics . 2
matchLabels . 3
Reaper-class . 5
SignalSet-class . 8
SimThresher-class . 9
Thresher class unions . 11
Thresher-class . 11
Thresher-data . 14
unitize . 15

1

https://doi.org/10.1186/s12859-017-1998-9
http://oompa.r-forge.r-project.org/

2 generics

Index 16

generics Generic Methods in the Thresher package

Description

New generic functions for threshing and reaping datasets.

Usage

S4 method for signature 'ANY'
getColors(object, ...)
S4 method for signature 'ANY'
getSplit(object, ...)
S4 method for signature 'ANY'
getStyles(object, ...)
S4 method for signature 'ANY'
scatter(object, ...)
S4 method for signature 'ANY'
heat(object, ...)
S4 method for signature 'ANY'
makeFigures(object, DIR=NULL, ...)

Arguments

object an object of any class, but typically Thresher, Reaper, or SimThresher.

DIR a character string containing the name of an existing directory.

... extra arguments for generic routines.

Details

The methods getColors, getSplit. and getStyles are used to extract the implicit color assign-
ments used in standard plots of objects of the Thresher or Reaper classes.

The heat and scatter methods represent generic heat maps and scatter plots, respectively.

The makeFigures method is to generate a standard suite of figures for an object. If the DIR argument
is not NULL, then the figures will be written to the indicated directory in PNG format. Otherwise,
the figures will be displayed interactivey on screen, waiting for user input to show each plot.

Value

The form of the value returned by these functions may change depending on the class of its ar-
gument. See the documentation of the particular methods for details of what is produced by that
method.

The getColors method should return a vector of colors with length equal to the number of columns
in a data set.

matchLabels 3

The getSplit method should return a vector of colors with length equal to the number of rows in
a data set.

The heat, scatter, and makeFigures methods are called for their side effects of producing plots.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Thresher, Reaper, and SimThresher.

matchLabels Match Arbitrary Class Assignments Across Methods

Description

These functions provide a set of tools to find the best match between the labels used by two different
algorithms to cluster the same set of samples.

Usage

labelMatcher(tab, verbose = FALSE)
matchLabels(tab)
countAgreement(tab)
labelAccuracy(data, labels, linkage="ward.D2")
bestMetric(data, labels)
remap(fix, vary)

Arguments

tab A contingency table, represented as a square matrix or table as an R object.
Both dimensions represent an assignment of class labels, with each row and
column representing one of the labels. Entries should be non-negative integer
counts of the number of objects having the labels represented by the row and
column.

verbose A logical value; should the routine print something out periodically so you know
it’s still working?

data A matrix whose columns represent objects to be clustered and whose rows rep-
resent the anonymous features used to perform the clustering.

labels A factor (or character vector) of class labels for the objects in the data matrix.

linkage A linkage rule accepted by the hclust function.

fix A vector of cluater assignments.

vary A vector of cluater assignments.

4 matchLabels

Details

In the most general sense, clustering can be viewed as a function from the space of "objects" of
interest into a space of "class labels". In less mathematical terms, this simply means that each
object gets assigned an (arbitrary) class label. This is all well-and-good until you try to compare the
results of running two different clustering algorithms that use different labels (or even worse, use
the same labels – typically the integers 1, 2, . . . ,K – with different meanings). When that happens,
you need a way to decide which labels from the different sets are closest to meaning the "same
thing".

That’s where this set of functions comes in. The core algorithm is implemented in the function
labelMatcher, which works on a contingency table whose entries Nij are the number of samples
with row-label = i and column-label = j. To find the best match, one computes (heuristically)
the values Fij that describe the fraction of all entries in row i and column j represented by Nij .
Perfectly matched labels would consist of a row i and a column j where Nij is the only nonzero
entry in its row and column, so Fij = 1. The largest value for Fij (with ties broken simply by
which entry is closer to the upper-left corner of the matrix) defines the best match. The matched
row and column are then removed from the matrix and the process repeats recursively.

We apply this method to determine which distance metric, when used in hierarchical clustering,
best matches a "gold standard" set of class labels. (These may not really be gold, of course; they
can also be a set of labels determined by k-means or another clustering algorithm.) The idea is to
cluster the samples using a variety of different metrics, and select the one whose label assignments
best macth the standard.

Value

The labelMatcher function returns a list of two vectors of the same length. These contain the
matched label-indices, in the order they were matched by the algorithm.

The matchLabels function is a user-friendly front-end to the labelmatcher function. It returns a
matrix, with the rows and columns reordered so the labels match.

The countAgreement function returns an integer, the number of samples with the "same" labels,
computed by summing the diagonal of the reordered matrix produced by matchLabels.

The labelAccuracy function returns a vector indexed by the set of nine distance metrics hard-
coded in the function. Each entry is the fraction of samples whose hierarchical clusters match the
prespecified labels.

The bestMetric function is a user-friendly front-end to the labelAccuracy function. It returns the
name of the distance metric whose hierarchical clusters best match the prespecified labels.

The remap function takes two sets of integer cluster assignments and returns a new set of labels for
the target that best matches the source.

Note

The labelAccuracy function should probably allow the user to supply a list of distance metrics
instead of relying on the hard-coded list internally.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

Reaper-class 5

See Also

Hierarchical clustering is implemented in the hclust function. We use the extended set of distance
metrics provided by the distanceMatrix function from the ClassDiscovery package. This set
includes all of the metrics from the dist funciton.

Examples

factor1 <- sample(c("A", "B", "C"), 30, replace=TRUE)
factor2 <- rep(c("X", "Y", "Z"), each=10)
tab <- table(factor1, factor2)
matchLabels(tab)
labelMatcher(tab)
R <- remap(factor1, factor2)
table(R, factor2) # remapping
table(R, factor1) # cross-comparison

Reaper-class Class "Reaper"

Description

The Reaper class implements the second step in the algorithm to combine outlier detection with
cliustering. The first step, implemented in the Thresher-class, performs principal components anal-
ysis an computes the PC dimension. Features with short loading vectors are identified as outliers.
Remaining features are clustering, based on the directions of the loading vectors, using mixtures of
von Mises-Fisher distributions.

Usage

Reaper(thresher, useLoadings = FALSE, cutoff = 0.3,
metric = NULL, linkage="ward.D2",
maxSampleGroups = 0, ...)

Arguments

thresher A Thresher object.

useLoadings A logical value; should model-based clustering using von Mises-Fisher distri-
butions be performed in the principal component space?

cutoff A real number; what length loading vector should be used to separate outliers
from significant contributers.

metric A character string containing the name of a clustering metric recognized by
either dist or distanceMatrix.

linkage A character string containing the name of a linkage rule recognized by hclust.
maxSampleGroups

An integer; the maximum number of sample groups to be indicated by color in
plots of the object.

... Additional arguments to be passed to the Thresher function.

6 Reaper-class

Details

Using the dimension computed when constructing the Thresher object, we computed the lengths
of the loading vectors associated to features in the data set. Features whose length is less than a
specified cutoff are identified as outliers and removed. (Based on extensive simulations, the default
cutoff is taken to be 0.3.) We then refit the Thresher model on the remaining features, which should,
in theory, leave the PC dimension, D, unchanged. We then rescale the remaining loading vectors
to unit length, so they can be viewed as points on a hypersphere. In order to cluster points on a
hypersphere, we use a model based on a mixture of von Mises-Fisher distributions. We fit mixtures
for every integer in the range D ≤ N ≤ 2D + 1; this range accounts for the possibility that each
axis has both positively and negatively correlated features. The extra +1 handles the degenerate
case when D = 0. The best fit is determined using the Bayes Information Criterion (BIC). The final
step is to compute a SignalSet; see the description of that class for more details.

Value

The Reaper function returns an object of the Reaper class.

Objects from the Class

Objects should be defined using the Reaper constructor. In the simplest case, you simply pass in a
previously computed Thresher object.

Slots

useLoadings: Logical; should model-based clustering be performed in PC space?

keep: Logical vector: which of the features (columns) should be retained as meaningful signal
instead of being removed as outliers?

nGroups: Object of class "number or miss"; the optimal number of groups/clusters found by the
algorithm. If all of the fits fail, this is NA.

fit: Object of class "fit or miss"; the best mixture model fit. Can be an NA if something goes
wrong when trying to fit mixture models.

allfits: Object of class "list"; a list, each of whose entries should be the results of fitting a
mixture model with a different number of components.

bic: Object of class "number or miss"; the optimal valus of the Bayes Information Criterion; can
be NA if all attempts to fit models fail.

metric: A character string; the preferred distance metric for hierarchical clustering. If not specified
by the user, then this is computed using the bestMetric function.

signalSet: Object of class SignalSet

maxSampleGroups: An integer; the maximum number of sample groups to be distinguished by
color in plots of the object.

Extends

Class "Thresher", directly.

Reaper-class 7

Methods

makeFigures signature(object = "Reaper"): This is a convenience function to produce a stan-
dard set of figures. In addition tot he plots preodcued forThresher object, this function also
produces heatmaps where sample clustering depends on either the continuous or binary signal
sets. If the DIR argument is non-null, it is treated as the name of an existing directory where
the figures are stored as PNG files. Otherwise, the figures are displayed interactively, one at a
time, in a window on screen.

getColors signature(object = "Reaper"): Returns the vector of colors assigned to the clustered
columns in the data set.

getSplit signature(object = "Reaper"): Returns the vector of colors assigned to the clustered
rows in the data set.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Min Wang.

References

Wang M, Abrams ZB, Kornblau SM, Coombes KR. Thresher: determining the number of clusters
while removing outliers. BMC Bioinformatics, 2018; 19(1):1-9. doi://10.1186/s12859-017-1998-9.

Wang M, Kornblau SM, Coombes KR. Decomposing the Apoptosis Pathway Into Biologically In-
terpretable Principal Components. bioRxiv, 2017. doi://10.1101/237883.

Banerjee A, Dhillon IS, Ghosh J, Sra S. Clustering on the unit hypersphere using von Mises-Fisher
distributions. Journal of Machine Learning Research, 2005; 6:1345–1382.

Kurt Hornik and Bettina Gr\"un. movMF: An R Package for Fitting Mixtures of von Mises-Fisher
Distributions. Journal of Statistical Software, 2014; 58(10):1–31.

See Also

PCDimension, SignalSet.

Examples

Simulate a data set with some structure
set.seed(250264)
sigma1 <- matrix(0, ncol=16, nrow=16)
sigma1[1:7, 1:7] <- 0.7
sigma1[8:14, 8:14] <- 0.3
diag(sigma1) <- 1
st <- SimThresher(sigma1, nSample=300)
Threshing is completed; now we can reap
reap <- Reaper(st)
screeplot(reap, col='pink', lcol='red')
scatter(reap)
plot(reap)
heat(reap)

8 SignalSet-class

SignalSet-class Class "SignalSet"

Description

We use the term "(continuous) signal" to refer to a weighted sum (by default, the mean) of gene-
features. By dichotomizing a continuous signals, we obtain a "binary signal". The SignalSet class
represents the set of continuous and binary signals obtained after clustering the features in a data
set.

Objects from the Class

Objects can be created by calls of the form new("SignalSet", ...). However, users are styrongly
discouraged from contructing a SignalSet manually. They are only used in the code internal to the
construction of a Reaper object.

Slots

members: Object of class "list". Each member of the list is a character vector enumerating the
features defining each signal.

continuous: A matrix where the number of columns equals the length of the members list; each
column contains the mean expression of the (assumed standardized) corresponding features.

binary: A matrix where the number of columns equals the length of the members list; each column
contains expression values dichotmoized to 0 or 1 by splitting the conmtinuous siognal at zero.

continuousClusters: Object of class "hclust" obtained by clustering samples based on the con-
tinuous signals.

binaryClusters: Object of class "hclust" obtained by clustering samples based on the binary
signals.

Methods

No methods defined with class "SignalSet" in the signature.

Note

The length of members and thus the number of signals may be smaller than expected from the
number of clusters found by Reaper. The implementation of the SignalSet tries to determine
if two signals are pointing in opposite directions, which could happen if they are postively and
negatively correlated sets. This behavior is likely to change in the future.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Reaper

SimThresher-class 9

Examples

Simulate a data set with some structure
set.seed(250264)
sigma1 <- matrix(0, ncol=16, nrow=16)
sigma1[1:7, 1:7] <- 0.7
sigma1[8:14, 8:14] <- 0.3
diag(sigma1) <- 1
st <- SimThresher(sigma1, nSample=300)
Threshing is completed; now we can reap
reap <- Reaper(st)
now extract the signal set
ss <- reap@signalSet
dim(ss@continuous)
dim(ss@binary)
table(ss@binary[,1], ss@binary[,2])
plot(ss@continuousClusters)

SimThresher-class Class "SimThresher"

Description

The SimThresher class is used to simulate Thresher objects.

Usage

SimThresher(ss, nSample, nm = deparse(substitute(ss)), rho = NULL,
agfun = agDimTwiceMean, ...)

Arguments

ss A covariance matrix.

nSample An integer; the number of samples to simulate.

nm A character string; the name of this object.

rho A numeric vector; the correlation between different variables. If NULL, then
these are obtained from the covariance matrix.

agfun A function used by the AuerGervini function to determine the number of prin-
cipal components.

... Parameters to be passed to the Thresher constructor.

Details

Basically, given a number of samples and a covariance matrix, simulate a data matrix of the ap-
propriate size and multivariate normal structure by assuming that all of the means are zero. After
simulating the data, we apply the Thresher algorithm. The result is an object that combines the
simulation parameters, simulated data, and fitted model.

10 SimThresher-class

Value

The SimThresher function returns an object of the SimThresher class.

Objects from the Class

Objects should be created using the SimThresher constructor.

Slots

nSample: An integer; the number of simulated samples.

covariance: A covariance matrix.

rho: A vector of correlation coefficients; essentially the unique values in the upper triangular part
of the covariance matrix.

Extends

Class Thresher, directly.

Methods

image signature(x = "SimThresher"): Produces an image of the covariance matrix.

makeFigures signature(object = "SimThresher"): This is a convenience function to produce
a standard set of figures. In addition tot he plots preodcued forThresher object, this function
also produces an image of te covariance matrix used in the simulations. If the DIR argument is
non-null, it is treated as the name of an existing directory where the figures are stored as PNG
files. Otherwise, the figures are displayed interactively, one at a time, in a window on screen.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Min Wang.

References

Wang M, Abrams ZB, Kornblau SM, Coombes KR. Thresher: determining the number of clusters
while removing outliers. BMC Bioinformatics, 2018; 19(1):1-9. doi://10.1186/s12859-017-1998-9.

See Also

Thresher, Reaper.

Examples

set.seed(250264)
rho <- 0.5
nProtein <- 16
splinter <- sample((nProtein/2) + (-3:3), 1)
sigma1 <- matrix(rho, ncol=nProtein, nrow=nProtein)
diag(sigma1) <- 1
st <- SimThresher(sigma1, nSample=300)

Thresher class unions 11

image(st, col=redgreen(64), zlim=c(-1,1))
screeplot(st, col='pink', lcol='red')
plot(st)
scatter(st)
heat(st)

Thresher class unions Class Unions

Description

The implemetation of the Reaper class makes use of two class unions in order to deal with cases
when we are unable to fit a model.

The number or miss class union can either hold a numeric vector or a logical vector.

The fit or miss class union can hold either a fitted movMF object or a logical vector.

Objects from the Class

Virtual Class: No objects may be created directly from either of these class-unions.

Methods

No methods are defined with class "number or miss" or "fit or miss" in the signature.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

Thresher-class Class "Thresher"

Description

The Thresher class represents the first step of an algorithm that combines outlier detection with
clustering. The object combines the results of hierarchical clustering and principal components
analysis (with a computation of its dimension) on the same data set.

Usage

Thresher(data, nm = deparse(substitute(data)),
metric = "pearson", linkage="ward.D2",
method = c("auer.gervini", "broken.stick"),
scale = TRUE, agfun = agDimTwiceMean)

12 Thresher-class

Arguments

data A data matrix.

nm A character string; the name of this object.

metric A character string containing the name of a clustering metric recognized by
either dist or distanceMatrix.

linkage A character string containing the name of a linkage rule recognized by hclust.

method A character string describing the algorthim used from the PCDimension package
to compute the number of significant components.

scale A logical value; should the data be scaled before use?

agfun A function that will be accepted by the AuerGervini function in the PCDimension
package.

Details

Thresher operates on a data matrix that is assumed to be organized with rows equal to samples
and columns equal to features (like genes or proteins). The algorithm begins by centering and (by
default, though this can be overridden with the scale parameter) standardizes the data columns. It
then performs a principal components analysis, and uses the Auer-Gervini method, as automated
in the PCDimension package, to determine the number, D, of statistically significant principal com-
ponents. For each column-feature, it computes and remembers the length of its loading vector in
D-dimensional space. (In case the Auer-Gervini method finds that D = 0, the length is instead
computed using D = 1.) These loading-lengths will be used later to identify and remove features
that act as outliers and do not contribute to clustering the samples. Finally, Thresher computes and
saves the results of hierarchically clustering the features in the data set, using the specified distance
metric and linkage rule.

Value

The Thresher function constructs and returns an object of the Thresher class.

Objects from the Class

Objects should be defined using the Thresher constructor. In the simplest case, you simply pass in
the data matrix that you want to cluster using the Thresher algorithm.

Slots

name: Object of class "character"; the name of this object.

data: Object of class "matrix"; the data that was used for clustering.

spca: Object of class "SamplePCA"; represents the results of performing a principal components
analysis on the original data.

loadings: Object of class "matrix"; the matrix of loading vectors from the principal components
analysis.

gc: Object of class "hclust"; the result of performing hierarchical clustering on the data columns.

pcdim: Object of class "numeric"; the number of significant principal components.

Thresher-class 13

delta: Object of class "numeric"; the lengths of the loading vectors in the principal component
space of dimension equal to pcdim.

ag: Object of class "AuerGervini"; represents the result of running the automated Auer-Gervini
algorithm to detemine the number of principal components.

agfun: A function, which is used as the default method for computing the principal component
dimension from the Auer-Gervini plot.

Methods

screeplot signature(x = "Thresher"): Produce a scree plot of the PCA part of the Thresher
object.

scatter signature(object = "Thresher"): Produce a scatter plot of the first two principal com-
ponents.

plot signature(x = "Thresher", y = "missing"): In two dimensions, plot the loading vectors
of the PCA part of the object.

heat signature(object = "Thresher"): Produce a heatmap of the data set.

makeFigures signature(object = "Thresher"): This is a convenience function to produce a
standard set of figures for a Thresher object. These are (1) a scree plot, (2) a plot of teh
Auer-Gervini slot, (3) a scatter plot of the firtst trwo principal components, (4) one or more
plots of the loading vectors, depending on the PCV dimension, and (5) a heat map. If the
DIR argument is non-null, it is treated as the name of an existing directory where the figures
are stored as PNG files. Otherwise, the figures are displayed interactively, one at a time, in a
window on screen.

getColors signature(object = "Thresher"): Returns the vector of colors assigned to the clus-
tered columns in the data set.

getSplit signature(object = "Thresher"): Returns the vector of colors assigned to the clustered
rows in the data set.

getStyles signature(object = "Thresher"): I refuse to document this, since I am not convinced
that it should actually exist.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Min Wang.

References

Wang M, Abrams ZB, Kornblau SM, Coombes KR. Thresher: determining the number of clusters
while removing outliers. BMC Bioinformatics, 2018; 19(1):1-9. doi://10.1186/s12859-017-1998-9.

Wang M, Kornblau SM, Coombes KR. Decomposing the Apoptosis Pathway Into Biologically In-
terpretable Principal Components. bioRxiv, 2017. doi://10.1101/237883.

See Also

Thresher, Reaper-class, AuerGervini-class

14 Thresher-data

Examples

set.seed(3928270)
ranData <- matrix(rnorm(100*12), ncol=12)
colnames(ranData) <- paste("G", 1:12, sep='')
thresh <- Thresher(ranData) # fit the model
screeplot(thresh) # check the scree plot; suggests dim = 4
plot(thresh@ag, list(thresh@agfun)) # Auer-Gervini object; dim = 0
scatter(thresh) # PCA scatter plot (rows = samples)
plot(thresh) # PCA loadings plot (cols = features)
heat(thresh) # ubiquitous 2-way heatmap

Thresher-data Thresher and Reaper Simulated Data

Description

This data set contains five related simulated data sets, along with the Thresher and Reaper objects
obtained by clustering the data sets and removing outliers.

Usage

data(savedSims)

Format

sigma : A list of length five; each entry is a covariance matrix used to simulate data.

savedSims : A list of length five; each entry is a SimThresher object obtained by simulating data
from one of the covariance matrices and running the Thresher algorithm.

savedReap : A list of length five; each entry is a Reaper object obtained by applying the Reaper
function.

Source

The simulated data sets were prepared by running the script Examples/makeSims.R that is installed
along with the Thresher package. The five covariance matrices vary in the number of correlated
subgroups (one or two) and whether they include both positively and negatively correlated variables,
or just positively correlated ones. Each data set also includes two uncorrelated "noise" variables that
should automatically be removed by the Reper-Thresher algorithms.

References

Wang M, Abrams ZB, Kornblau SM, Coombes KR. Thresher: determining the number of clusters
while removing outliers. BMC Bioinformatics, 2018; 19(1):1-9. doi://10.1186/s12859-017-1998-9.

unitize 15

unitize Convert a Vector to Unit Length

Description

Rescales each column of a matrix to produce vectors of length one.

Usage

unitize(mat)

Arguments

mat A matrix of real numbers.

Details

No details beyond the simple description are requires; it is implemented exactly the way you would
suspect.

Value

A matrix of the same size as the input matrix.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

Examples

simmat <- matrix(rnorm(12), 3, 4)
U <- unitize(simmat)
apply(U^2, 2, sum) # check unit length
simmat/U # view normalization factors

Index

∗ array
unitize, 15

∗ classes
Reaper-class, 5
SignalSet-class, 8
SimThresher-class, 9
Thresher class unions, 11
Thresher-class, 11

∗ classif
matchLabels, 3

∗ cluster
matchLabels, 3
Reaper-class, 5
Thresher-class, 11

∗ datasets
Thresher-data, 14

∗ methods
generics, 2

∗ multivariate
matchLabels, 3

AuerGervini, 9, 12

bestMetric (matchLabels), 3

countAgreement (matchLabels), 3

dist, 5, 12
distanceMatrix, 5, 12

fit or miss-class (Thresher class
unions), 11

generics, 2
getColors (generics), 2
getColors,ANY-method (generics), 2
getColors,Reaper-method (Reaper-class),

5
getColors,Thresher-method

(Thresher-class), 11
getSplit (generics), 2

getSplit,ANY-method (generics), 2
getSplit,Reaper-method (Reaper-class), 5
getSplit,Thresher-method

(Thresher-class), 11
getStyles (generics), 2
getStyles,ANY-method (generics), 2
getStyles,Reaper-method (Reaper-class),

5
getStyles,Thresher-method

(Thresher-class), 11

hclust, 3, 5, 12
heat (generics), 2
heat,ANY-method (generics), 2
heat,Thresher-method (Thresher-class),

11

image,SimThresher-method
(SimThresher-class), 9

labelAccuracy (matchLabels), 3
labelMatcher (matchLabels), 3

makeFigures (generics), 2
makeFigures,ANY-method (generics), 2
makeFigures,Reaper-method

(Reaper-class), 5
makeFigures,SimThresher-method

(SimThresher-class), 9
makeFigures,Thresher-method

(Thresher-class), 11
matchLabels, 3

number or miss-class (Thresher class
unions), 11

PCDimension, 7, 12
plot,Thresher,missing-method

(Thresher-class), 11

Reaper, 2, 3, 8, 10, 14

16

INDEX 17

Reaper (Reaper-class), 5
Reaper-class, 5
remap (matchLabels), 3

savedReap (Thresher-data), 14
savedSims (Thresher-data), 14
scatter (generics), 2
scatter,ANY-method (generics), 2
scatter,Thresher-method

(Thresher-class), 11
screeplot,Thresher-method

(Thresher-class), 11
sigma (Thresher-data), 14
SignalSet, 6, 7
SignalSet (SignalSet-class), 8
SignalSet-class, 8
SimThresher, 2, 3, 14
SimThresher (SimThresher-class), 9
SimThresher-class, 9

Thresher, 2, 3, 5, 6, 9, 10, 13, 14
Thresher (Thresher-class), 11
Thresher class unions, 11
Thresher-class, 5, 11
Thresher-data, 14

unitize, 15

	generics
	matchLabels
	Reaper-class
	SignalSet-class
	SimThresher-class
	Thresher class unions
	Thresher-class
	Thresher-data
	unitize
	Index

