
Introduction to SparseGrid ∗

Jelmer Ypma

July 31, 2013

Abstract

This vignette describes how to use SparseGrid, which is an R trans-
lation1 of the Matlab code on http://www.sparse-grids.de (Heiss and
Winschel, 2008). Sparse grids can be used to numerically approximate
integrals of high dimension, with fewer nodes than grids constructed by a
product rule.

1 Introduction

Integrals arise in many places in statistics, for instance when calculating like-
lihood contributions in latent variable models (where some of the underlying
variables are not observed), or when calculating conditional expectations or
moments of functions of random variables. When an analytic solution to these
integrals is not available, they have to be evaluated numerically. There are
many texts providing a description of how to numerically approximate integrals
(e.g. see Judd, 1998; Miranda and Fackler, 2002, for an introduction to differ-
ent approximation methods). Basically, many of the methods to approximate
an integral in 1 dimension, rewrite the integral as a weighted sum

∫

Ω

g(x)f(x)dx ≈
R∑

r=1

wrg(xr),

where Ω is the domain that we’d like to integrate over. The function g(x) is
the function of interest, and f(x) is a weighting function. In statistics f(x) will
usually be the probability density function of x. For instance, if we’re interested
in the mean of x, where x is normally distributed, then we can write this as an
integral

E [x] =

∫
∞

−∞

x

︸︷︷︸

g(x)

· 1√
2πσ

e
(x−µ)2

2σ2

︸ ︷︷ ︸

f(x)

dx.

For this choice of g(x) there is of course a closed-form solution, but the integral
has to be approximated numerically for more complicated functions g(x). De-
pending on the function f(·), there are standard (quadrature) rules to choose
wr, referred to as weights, and xr , referred to as nodes.

∗This package should be considered in beta and comments about any aspect of the package
are welcome. This document is an R vignette prepared with the aid of Sweave (Leisch, 2002).

1Florian Heiss and Viktor Winschel kindly provided permission to make this R package
based on their Matlab version publicly available.

1

Four quadrature rules are included with SparseGrid. The first two, GQU and
KPU, can be used for unweighted integration on a unit domain, Ω = [0, 1]D, f(x) =
1. These can be used if the random variables that we want to integrate out have
a uniform distribution, since f(x) = 1 is the probability density function of a
uniformly distributed random variable. The other two quadrature rules, GQN
and KPN, can be used to approximate a Guassian-weighted integral on RD.

2 Integration over multiple dimensions

In multiple dimensions, a straightforward way to combine the nodes and weights
of single dimensions, is by using a product rule. The nodes of the multidimen-
sional approximation are the kronecker product of the separate dimensions

x = x1 ⊗ x2 ⊗ · · · ⊗ xD,

where D is the number of dimensions. For instance, for two dimensions

x = x1 ⊗ x2 =

x1,1 x2,1

x1,1 x2,2

...
...

x1,1 x2,R2

x1,2 x2,1

...
...

x1,2 x2,R2

...
...

x1,R1 x2,R2

,

where xd,k is the k-th node in dimension d. For the two-dimensional example,
the total number of integration nodes is R1 · R2. In general, when we have
R nodes in each dimension, the number of nodes needed to approximate a D

dimensional integral is RD.

Table 1: Number of nodes used by SGI or product rule, k = 5, type=GQU

D 1 2 3 4 5 6 7 8 9
SGI 5 53 165 385 781 1433 2437 3905 5965
kD 5 25 125 625 3125 15625 78125 390625 1953125

Heiss and Winschel (2008) describe how sparse grids can be used to ap-
proximate multi-dimensional integrals, that occur for instance in estimation
problems2. As an example they compare different ways of approximating the
high-dimensional integrals that arise in mixed logit models.

The benefit of using sparse grids, is that fewer integration nodes are needed
than in the case of the product rule, except for low dimensional integrals. Table
1 shows the number of nodes that are needed for the two methods for different

2Another way to deal with the curse of dimensionality is to use Monte Carlo metohds to
approximate the integral.

2

dimensions. For instance, in 8 dimensions the product rule uses 3905 integration
nodes and sparse grid integration requires 390625 nodes.

Of course, this reduction in number of integration nodes comes at a cost (see
Heiss and Winschel, 2008, for details). The parameter, k, in table 1 controls
the accuracy of the approximation. A sparse grid of accuracy k can accurately
integrate the function g(x) if g(x) is a polynomial of total order 2k − 1. For
example, the polynomial

a1x
3
1 + a2x

2
1x2 + a3x1x

2
2 ++a4x1 + a5x

2
2 + a6x

2
2 + a7x

3
2,

is of total order 3, since the maximum of the sum of the exponents in each term
is 3. The product rule grid based on the same one-dimensional quadrature nodes
is accurate for higher dimensions, terms such as x3

1x
2
2, x

3
1x

3
2, x1x

3
2 can also occur.

Since these higher orders grow exponentially3, the number of nodes needed to
approximate this polynomial without error grows exponentially. The number of
nodes used in sparse grid integration are smaller by bounding the total order
of the polynomial that is integrated exactly. This difference in accuracy is the
reason why sparse grids contain less nodes then grids constructed by the product
rule.

For general problems you usually want to approximate integrals of functions
g(x) that can not be written as a polynomial. However, the function g(x) might
be well approximated by a low-order polynomial. In these cases it is good
practice to check if the approximation to the integral is accurate enough for your
specific problem. One way to get a sense of the accuracy of the approximation,
is to compare approximations obtained using different grids. For instance by
increasing the number of nodes, using sparse grids, product rule grids or Monte
Carlo grids with different seeds for the random number generator.

3 Installation

The package can be installed from CRAN

> install.packages('SparseGrid')

After which you should be able to load the package using

> library('SparseGrid')

And get help for the main function with

> ?SparseGrid

Information on how to cite the original paper on which this code is based is
obtained through

> citation('SparseGrid')

This paper describes the theory/code on which

SparseGrid is based:

3If there are 5 dimensions, the tensor product of the same univariate integration grid is
also exact for the term x

3

1
x
3

2
x
3

3
x
3

4
x
3

5
. The total order of this term is 15, and grows with the

dimension of the integration.

3

Florian Heiss, Viktor Winschel, Likelihood

approximation by numerical integration on sparse

grids, Journal of Econometrics, Volume 144, Issue

1, May 2008, Pages 62-80

A BibTeX entry for LaTeX users is

@Article{,

title = {Likelihood approximation by numerical integration on sparse grids},

author = {Florian Heiss and Viktor Winschel},

journal = {Journal of Econometrics},

volume = {144},

number = {1},

pages = {62--80},

year = {2008},

}

More information is available from the website:

http://www.sparse-grids.de

4 Overview of available functions

There are four different functions to create grids for integration. Each of these
functions returns a list with two elements; nodes, a matrix of nodes, and
weights, a vector of weights. More information can be obtained from their
respective help pages.

> ?createSparseGrid

> ?createProductRuleGrid

> ?createMonteCarloGrid

> ?createIntegrationGrid

Another function that is included in the packages is readASCGrid, which
can be used to read files with integration grids as available on the website
http://www.sparse-grids.de.

5 Example

This section contains an example based on the one available from http://www.sparse-

grids.de. The example shows how to approximate an integral with sparse grids,
and compares it to approximating the same integral using Monte Carlo simula-
tion. The integral that we want to approximate is

I =

∫ 1

0

· · ·
∫ 1

0

(
D∏

d=1

1√
2π

e−
1
2x

2
d

)

︸ ︷︷ ︸

g(x)

dxD · · · dx1.

4

The integration domain of this function is [0, 1]D and we can use a unit weighting
function f(x) = 1, so we can use the KPU or GQU methods to create sparse grids
for numerical approximation of the integral.

First, load the library,

> library('SparseGrid')

and create a sparse grid of dimension = 10, and with accuracy k = 2

> dimension <- 10

> k <- 2

> sgrid <- createSparseGrid(type='KPU', dimension=dimension, k=k)

This grid has

> length(sgrid$weights)

[1] 21

nodes for the chosen accuracy. Usually we only have to create this grid once
at the beginning of an estimation procedure, and can re-use the same grid to
approximate different integrals (e.g. the likelihood contributions of different
individuals, or the approximation to an integral in different iterations of an
optimization method).

Then, we define the function g in R that calculates the function g(x) defined
above at a given point x

> g <- function(x, mu=0, sigma=1) {

return(prod(exp(-.5*((x-mu)/sigma)^2)/sqrt(2*pi*sigma^2)))

}

Note that this function only works on one gridpoint at a time. Because we
want to evaluate the function at many gridpoints (each row in sgrid$nodes

is a separate gridpoint), we write this convenience function that performs the
approximation.

> approximate.integral <- function(func, sgrid, ...) {

gx <- apply(sgrid$nodes, 1, function(x) { func(x, ...) })

return(sum(gx * sgrid$weights))

}

The first line of this function loops over the rows (gridpoints) of the integration
grid and evaluates the function at each gridpoint. This results in a vector gx.
We then multiply this vector by the corresponding weights and take the sum.
This weighted sum is our approximation to the integral.

> sigma <- 2

> approximate.integral(g, sgrid, mu=0, sigma=sigma)

[1] 6.58969e-08

In R we can get the ‘exact’ solution4 using

> trueval <-

(pnorm(1, mean=0, sd=2) - pnorm(0, mean=0, sd=sigma))^dimension

4pnorm itself is not completely exact, but is an approximation using the erf-function.

5

so we can compare the approximation using different accuracies for the sparse
grid, and the Monte Carlo integration with the ‘true’ value.

We can also approximate the integral using a grid of num.sim = 1000 ran-
dom points drawn from the uniform distribition

> num.sim <- 1000

> set.seed(3141)

> mcgrid <- createMonteCarloGrid(

runif, dimension=dimension, num.sim=num.sim)

and evaluate the function that we want to integrate over to get an approximation
by Monte Carlo simulation

> approximate.integral(g, mcgrid, mu=0, sigma=sigma)

[1] 6.58229e-08

Below, we compare the error for this specific case for different accuracies of
the sparse grid. The number of nodes used in the Monte Carlo approximation
to the integral are the same as the number of nodes in the sparse grid. This
enables us to compare the error of both methods when the computation time is
the same, since conditional on the number of integration nodes, the computation
time for the two methods is the same.

First we set the random seed, the dimension of the integration and the
maximum accuracy level for which we want to approximate the integral.

> set.seed(3141)

> dimension <- 10 # dimension of integral

> maxk <- 4 # max. accuracy level (pol. exactness wil be 2k-1)

Then we create a matrix of the right dimensions that will hold the results.

> # create matrix to hold results

> res <- matrix(NA, nrow=maxk-1, ncol=5)

> colnames(res) <- c("D", "k", "nodes", "SG error", "MC error")

> rownames(res) <- rep("", maxk-1)

The comparision is performed by looping over the requested accuracy levels.
For each accuracy level we create a sparse grid, and do the approximation and
calculate the approximation error by comparing the approximated value to the
‘true’ value. Since Monte Carlo approximations are different for each seed of the
random generator, we use the mean of 1000 approximated values and calculate
the approximation error based on this mean. The results are then saved in res.

> # loop over different accuracy levels

> for (k in 2:maxk) {

sparse grid integration

sgrid <- createSparseGrid('KPU', dimension, k)

SGappr <- approximate.integral(g, sgrid, mu=0, sigma=sigma)

SGerror <- sqrt((SGappr - trueval)^2) / trueval

Monte Carlo integration with the same number of nodes

6

1000 simulation repetitions

num.nodes <- length(sgrid$weights)

MCappr <- rep(0, 1000)

for (r in 1:1000) {

mcgrid <- createMonteCarloGrid(

runif,

dimension=dimension,

num.sim=num.nodes)

MCappr[r] <- approximate.integral(

g, mcgrid, mu=0, sigma=sigma)

}

MCerror = sqrt(mean((MCappr-trueval)^2)) / trueval

save results in row of matrix res

res[k-1,] <- c(dimension, k, num.nodes, SGerror, MCerror)

}

The results for this comparison are given in the following table

> res

D k nodes SG error MC error

10 2 21 4.528995e-03 0.024644168

10 3 201 1.189321e-04 0.007877159

10 4 1201 2.073774e-06 0.003383167

For this specific example we see that the error for sparse grid integration declines
much more rapidly when increasing the number of nodes than the error when
approximating the integral using Monte Carlo simulation.

References

Florian Heiss and Viktor Winschel. Likelihood approximation by numerical
integration on sparse grids. Journal of Econometrics, 144(1):62–80, 2008.

K.L. Judd. Numerical methods in economics. MIT Press, Cambridge, MA, USA,
1998. ISBN 9780262100717.

Friedrich Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. In Wolfgang Härdle and Bernd Rönz, editors, Compstat 2002 —

Proceedings in Computational Statistics, pages 575–580. Physica Verlag, Hei-
delberg, 2002. URL http://www.stat.uni-muenchen.de/~leisch/Sweave.
ISBN 3-7908-1517-9.

Mario J. Miranda and Paul L. Fackler. Applied Computational Economics and

Finance. MIT Press, Cambridge, MA, USA, 2002. ISBN 0262134209.

7

