Benchmark: Stepwise vs Grouped vs Glmnet Engines

Frédéric Bertrand

Cedric, Cnam, Paris
frederic.bertrand@lecnam.net

2025-11-21

This vignette provides quick timing comparisons across engines on a synthetic dataset. Timings are indicative (single run) and depend on your machine and BLAS.

What you’ll learn

library(gamlss)
library(SelectBoost.gamlss)

set.seed(123)
n <- 800
p <- 30
X <- replicate(p, rnorm(n))
colnames(X) <- paste0("x", 1:p)
eta <- 1 + X[,1]*1.0 - X[,3]*1.2 + X[,5]*0.8
y <- gamlss.dist::rNO(n, mu = eta, sigma = 1)
dat <- data.frame(y, X)

engines <- list(
  list(name="stepGAIC", args=list(engine="stepGAIC")),
  list(name="glmnet-lasso", args=list(engine="glmnet", glmnet_alpha=1)),
  list(name="grpreg", args=list(engine="grpreg", grpreg_penalty="grLasso")),
  list(name="sgl", args=list(engine="sgl", sgl_alpha=0.9))
)

res <- data.frame(engine=character(), elapsed=numeric(), stringsAsFactors = FALSE)

for (e in engines) {
  cat("Running", e$name, "...\n")
  t <- system.time({
    fit <- sb_gamlss(
      y ~ 1, data = dat, family = gamlss.dist::NO(),
      mu_scope = as.formula(paste("~", paste(colnames(X), collapse = " + "))), 
      B = 40, pi_thr = 0.6, pre_standardize = TRUE, trace = FALSE
    )
    # merge engine-specific args and refit quickly with small B to avoid overuse
    fit <- do.call(sb_gamlss, modifyList(list(
      formula = y ~ 1, data = dat, family = gamlss.dist::NO(),
      mu_scope = as.formula(paste("~", paste(colnames(X), collapse = " + "))), 
      B = 40, pi_thr = 0.6, pre_standardize = TRUE, trace = FALSE
    ), e$args))
  })
  res <- rbind(res, data.frame(engine=e$name, elapsed=t[["elapsed"]]))
}
#> Running stepGAIC ...
#> Running glmnet-lasso ...
#> Running grpreg ...
#> Running sgl ...

print(res)
#>         engine elapsed
#> 1     stepGAIC  65.608
#> 2 glmnet-lasso  34.033
#> 3       grpreg  34.354
#> 4          sgl 255.632

# simple barplot
op <- par(mar=c(8,4,2,1)); barplot(res$elapsed, names.arg = res$engine, las = 2,
     ylab = "Elapsed (s)", main = "Engine wall time (n=800, p=30, B=40)"); par(op)