Package ‘RelativeDistClust’

September 22, 2025
Type Package

Title Clustering with a Novel Non Euclidean Relative Distance
Version 0.1.0

Author Irene Creus Marti [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7962-4478>)

Maintainer Irene Creus Marti <ircrmar@mat.upv.es>

Description Using the novel Relative Distance to cluster datasets. Implementation of a clustering ap-
proach based on the k-means algorithm that can be used with any distance. In addition, implemen-
tation of the Hartigan and Wong method to accommodate alternative distance metrics. Both meth-
ods can operate with any distance measure, provided a suitable method is available to com-
pute cluster centers under the chosen metric. Additionally, the k-medoids algorithm is imple-
mented, offering a robust alternative for clustering without the need of computing cluster cen-
ters under the chosen metric. All three methods are designed to support Relative distances, Eu-
clidean distances, and any user-defined distance functions. The Hartigan and Wong method is de-
scribed in Hartigan and Wong (1979) <doi:10.2307/2346830> and an explanation of the k-
medoids algorithm can be found in Reynolds et al (2006) <doi:10.1007/s10852-005-9022-1>.

License GPL-3

Encoding UTF-8

Imports compositions, proxy, utils, ggpubr, factoextra, ggplot2
Suggests testthat (>= 3.0.0), clusterSim, fpc, gtools, cluster
Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

Repository CRAN

Date/Publication 2025-09-22 11:50:06 UTC

Contents
add_unique_numbers L. L e 2
add_unique_numbers2 e 3
AitchisonDistance e e 4

https://orcid.org/0000-0002-7962-4478
https://doi.org/10.2307/2346830
https://doi.org/10.1007/s10852-005-9022-1

2 add_unique_numbers
BrayCurtisDissimilarity 4
centers_function_mean e e e e e e e e e 5
centers_function_RelativeDistance o 6
ClustPlot e e e 6
DaviesBouldinlndex e 7
DistanceBetweenGroups e e e 8
DistanceSameGroup e e e e e 10
Dist_ICI_IC2 e e e e 11
DosMInimos e e e e e 11
Dunnlndex 12
d_i_other_group L 13
ECDentroCluster e e e e e e e e e 14
ECDentroCluster3 e e 15
encontrar_COMpPONENE v v v v v v v et e e e e e e e e e e e e e 16
Euclideandistance 17
Hartigan_and_Wong L 18
Hartigan_and_Wong_total 19
init_centers_hw L e e e e e e e 21
init_centers_ random e e e e e e e 22
kmedois_distance 23
ManhattanDistance e 24
NEC . . e e 25
NEC_total e e e e 26
Number_of failes 28
RelativeDistance e 29
Silhouette e e 29
Stepd . . 30
SEPO . . e e e 33
tO_MINIMIZE o v e o e 35
vector_a_lista e e e 36

Index 38

add_unique_numbers Add values to a vector if they are not already in it

Description

This function adds two values to a vector if the values are not already in the vector.

Usage

add_unique_numbers(vector, numl, num2)
Arguments
vector Vector with values
num1 Number. Value that will be added to the vector it it is no already in it.

num2

Number. Value that will be added to the vector it it is no already in it.

add_unique_numbers2

Value

Returns the vector with the values added if they are not alredy in the vector.

Examples
mi_vector <- c(1, 2, 3, 4, 5)

numl <- 8
num2 <- 10

mi_vector <- add_unique_numbers(mi_vector, numl, num2)

add_unique_numbers2 Add one value to a vector if it is not already there

Description

This function adds one value to a vector if it is not already in the vector.

Usage

add_unique_numbers2(vector, numl)

Arguments

vector Vector with values

num1 Number. Value that will be added to the vector it it is no already in it.
Value

Returns the vector with the value added if it is not already in the vector.

Examples

mi_vector <- c(1, 2, 3, 4, 5)
numl <- 8

mi_vector <- add_unique_numbers2(mi_vector, num1l)

BrayCurtisDissimilarity

AitchisonDistance Aitchison distance

Description

This function calculates the Aitchison distance between two vectors.

Usage

AitchisonDistance(vectl, vect2)

Arguments
vectl vector
vect?2 vector
Value

A number with the distance between vect1 and vect2.

Examples

AitchisonDistance(c(1,2,3), c(4,5,6))

BrayCurtisDissimilarity
Bray-Curtis dissimilarity

Description

This function calculates the Bray-Curtis dissimilarity between two vectors

Usage

BrayCurtisDissimilarity(x, y)

Arguments
X vector
y vector
Value

A number with the Bray-Curtis dissimilarity between x and y.

centers_function_mean 5

Examples

BrayCurtisDissimilarity(c(1,2,3), c(4,5,6))

centers_function_mean Center of a cluster using the mean

Description

This function calculates the center of a group using the mean of its components.

Usage

centers_function_mean(data, grouping)

Arguments
data Matrix. The points that we want to group are in the rows.
grouping List. List with the number of the rows of the data matrix that are in the group
[Cil].
Value

A matrix. The row i contains the centers of the group in [[i]].

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

grouping=list(c(1,2), c(3,4),c(5,6))

centers_function_mean(data, grouping)

ClustPlot

centers_function_RelativeDistance

Center of a cluster when the Relative distance is used.

Description

This function calculates the center of a group when the Relative distance is used to group.

Usage

centers_function_RelativeDistance(data, grouping)

Arguments
data Matrix. The points that we want to group are in the rows.
grouping List. List with the number of the rows of the data matrix that are in the group
[Cid].
Value

A matrix. The row i contains the centers of the group in [[i]1].

Examples

set.seed(451)
data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),

matrix(runif(20,50,70), nrow = 2, ncol = 10))

grouping=list(c(1,2), <(3,4),c(5,6))
centers_function_RelativeDistance(data, grouping)

ClustPlot Plotting the clustring results

Description

This function performs a PCA to reduce the dataset to two dimensions. Then, it draws the points,
marks the center of the groups, the exact groups and the obtained groups.

Usage

ClustPlot(data, grouping, exact_grouping, centers, k)

DaviesBouldinIndex 7

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
grouping List with information of the groups obtained using some clustering method.

Each component of the list contains a vector with the points that belong to that
group. More specifically, the list component i has a vector with the numbers of
the row of the matrix data where the points belonging to the group i are.

exact_grouping List with the information of the real groups present in the data. Each component
of the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row of the
matrix data where the points belonging to the group i are.

centers Matrix. Each row contains the center of each group. The groups are obtained
using some clustering methods.
k Number. Number of groups.
Value

Returns a plot where it is possible to visualize the he points, the center of the groups, the exact
groups (represented in the type of point used to represent the data) and the obtained groups (ob-
served in the geometric froms that join the points).

Examples

data=iris[,-5]

exact_grouping=list(which(iris[,5]=="setosa"),
which(iris[,5]=="versicolor"),
which(iris[,5]=="virginica"))

grouping=list(c(1:40),c(41:90),c(91:150))
k=3
centers=rbind(c(1,2,3,4),c(2,3,4,5),c(4,5,6,7))

ClustPlot(data, grouping, exact_grouping,centers, k)

DaviesBouldinIndex Davies-Bouldin index

Description

This function calculates the Davies-Bouldin index as is defined by Davies and Bouldin (1979)
without imposing that the use of the euclidean distance. This function allows calculating the Davies-
Bouldin index using different distances.

Usage

DaviesBouldinIndex(data, FHW_output, distance)

DistanceBetweenGroups

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
FHW_output List. List with:

* centers: the information of the centers updated.

* grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
Value

Returns a number, the value of the Davies-Bouldin index.

References

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2), 224-227.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

k=3

seed=5

FHW_output=Hartigan_and_Wong(data,
Euclideandistance,
K,
centers_function_mean,
init_centers_random,
seed=seed,
10)

DaviesBouldinIndex(data, FHW_output, Euclideandistance)

DistanceBetweenGroups Distance between groups

Description

This function calculates the distance between points in two groups. For each point in the first
group, it calculates the distance from that point to all points in the second group. Finally, it takes
the minimum distance obtained.

DistanceBetweenGroups 9

Usage

DistanceBetweenGroups(groupl, group2, FHW_output, distance, data)

Arguments
group1
group2

FHW_output

distance

data

Value

Number. Number of the first group.
Number. Number of the second group.
List. Output of the Hartigan_and_Wong function. List with:

* centers: the information of the centers updated.

 grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Matrix with dim(data)[1] points of dim(data)[2] dimensions.

Returns a number, the value of the minimum distance between pair of points of the two groups.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

seed=5

FHW_output=Hartigan_and_Wong(data,

Euclideandistance,

K,
centers_function_mean,
init_centers_random,
seed=seed,

10)

DistanceBetweenGroups(1, 2, FHW_output, Euclideandistance, data)

10 DistanceSameGroup

DistanceSameGroup Distance between points in the same group

Description
This function calculates the distance between points in the same group. This function calculates the
distance between the pair of points in the group. Then, takes the maximum distance.

Usage

DistanceSameGroup(groupl, FHW_output, data, distance)

Arguments
groupT Number. Number of the group.
FHW_output List. List with:
* centers: the information of the centers updated.
 grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
Value

Returns a number, the value of the maximum distance between pair of points of the group.

Examples

set.seed(451)

data=rbind(matrix(runif(30,1,5), nrow = 3, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

seed=5

FHW_output=Hartigan_and_Wong(data,
Euclideandistance,
K,
centers_function_mean,
init_centers_random,
seed=seed,
10)

DistanceSameGroup(2, FHW_output, data, Euclideandistance)

Dist IC1_IC2 11

Dist_IC1_IC2 Finding IC1 and IC2 from a distance matrix

Description
This function finds the IC1 and IC2 from a distance matrix. IC1 and IC2 are the closets and second
closest cluster centers.

Usage
Dist_IC1_IC2(Dist_e_cent)

Arguments
Dist_e_cent Matrix. The position (i,j) contains the distance between the taxa i and the center
J-
Value

Returns a matrix. The first column contain the IC1 and the second column contain the IC2.

Examples

dist=rbind(c(1,2,3),c(6,19,2),c(2,4,1),c(2,3,9))
Dist_IC1_IC2(dist)

DosMinimos Finding the two smallest values for each row of a matrix

Description

This function finds the two smallest values for each row of a matrix matriz.

Usage

DosMinimos(matriz)
Arguments

matriz Matrix
Value

Returns a matrix. The row i contains the two minimum values of the row i of the matrix matriz.
The first column of the matriz contains the smallest value.

12 DunnIndex

Examples

ma=rbind(c(5,4,3,2,1), c(10,9,8,7,6), c(120,119,103,104,105))
DosMinimos(ma)

DunnIndex Dunn’s index

Description

This function calculates the Dunn’s index as is defined in Bezdek and Pal (1995) without imposing
that the use of the euclidean distance. This function allows calculating the Dunn’s index using
different distances.

Usage

DunnIndex(data, FHW_output, distance)

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
FHW_output List. List with:

* centers: the information of the centers updated.

* grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
Value

Returns a number, the value of the Dunn’s index.

References

Bezdek, J. C., & Pal, N. R. (1995, November). Cluster validation with generalized Dunn’s indices.
In Proceedings 1995 second New Zealand international two-stream conference on artificial neural
networks and expert systems (pp. 190-193). IEEE.

d_i_other_group

Examples

set.seed(451)

13

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

k=3
seed=5

FHW_output=Hartigan_and_Wong(data,

Euclideandistance,

k,
centers_function_mean,
init_centers_random,
seed=seed,

10)

DunnIndex(data, FHW_output, Euclideandistance)

d_i_other_group

Distance between a point and a group

Description

This function calculates the distance between the point i of the data matrix and all the components

in the group num.

Usage

d_i_other_group(data, i, distance, FHW_output, num)

Arguments

data
i

distance

FHW_output

num

Matrix with dim(data)[1] points of dim(data)[2] dimensions.
Number. Number of the row of data where the point is.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

List. List with:

* centers: the information of the centers updated.

* grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

Number. Number of the group from FHW_output$grouping.

14 ECDentroCluster

Value

Returns a vector. The component j contains the distance between the point in the row i of the data
matrix and the point j of the group num.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol 10),
matrix(runif(20,50,70), nrow = 2, ncol 10))

k=3
seed=5

FHW_output=Hartigan_and_Wong(data,
Euclideandistance,
k,
centers_function_mean,
init_centers_random,
seed=seed,
10)

d_i_other_group(data, 1, Euclideandistance, FHW_output,?2)

ECDentroCluster Sum of squared errors within the cluster

Description

The sum of squared errors within the cluster (also known as inertia) is calculated. We calculate the
squared distance between the points that belong to a cluster and the cluster centroid. Then, we sum
all the squared distances obtained. In this function the user can choose the distance that want to use
to calculate the sum of squared errors within the cluster.

Usage

ECDentroCluster(data, FHW_output, distance)

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
FHW_output List. List with:

* centers: the information of the centers updated.

ECDentroCluster3 15

 grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Value

Returns a vector. The component i contains the sum of squared errors value of group i.

Examples

set.seed(231)
datal=gtools::rdirichlet(10,c(1,1,1,4,4))
data=t(datal)

grouping=list(c(1,2,3),c(4,5))
centers=centers_function_mean(data, grouping)
FHW_output=1list(centers=centers, grouping=grouping)
distance=Euclideandistance

ECDentroCluster(data, FHW_output, distance)

ECDentroCluster3 Sum of errors within the cluster

Description

We calculate the distance between the points that belong to a cluster and the cluster centroid. Then,
we sum all the distances obtained. In this function the user can choose the distance that want to use
to calculate the sum of errors within the cluster.

Usage

ECDentroCluster3(data, FHW_output, distance)

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
FHW_output List. List with:

* centers: the information of the centers updated.

 grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

16

encontrar_componente

distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Value

Returns a vector. The component i contains the sum of squared errors value of group i.

Examples

#'set.seed(231)
datal=gtools::rdirichlet(10,c(1,1,1,4,4))
data=t(datal)

grouping=list(c(1,2,3),c(4,5))
centers=centers_function_mean(data, grouping)
FHW_output=1list(centers=centers, grouping=grouping)
distance=Euclideandistance

ECDentroCluster3(data, FHW_output, distance)

encontrar_componente Finding the component in the list that contains a value

Description

This function finds in which component of the list 1ista the number valor is.

Usage

encontrar_componente(lista, valor)

Arguments
lista List. Each component of the list has a vector. The different vector can not
contain the same number.
valor Number. We want to know in which component of the list 1ista the number
valor is.
Value

Returns a number. Return the number of the component of 1ist that contains the number valor.

Euclideandistance

Examples

mi_lista <- list(

a = C(1! 2! 3),
b =c(,7,8,9),
c = c(4,5)

)

valor=7

encontrar_componente(mi_lista, valor)

17

Euclideandistance Euclidean distance

Description

This function calculates the euclidean distance between two vectors

Usage

Euclideandistance(vect1, vect2)

Arguments
vectl vector
vect2 vector
Value

A number with the distance between vect1 and vect2.

Examples

Euclideandistance(c(1,2,3), c(4,5,6))

18

Hartigan_and_Wong

Hartigan_and_Wong Flexibilization of the Hartigan and Wong algorithm

Description

This function implements the Hartigan and Wong algorithm (Hartigan and Wong, 1979) without
imposing the use of the euclidean distance and without imposing that the centers of the groups are
calculated by averaging the points. This function allow the use of other distances and different ways
to calculate the centers of the groups.

Usage

Hartigan_and_Wong(

data,
distance,
k,

centers_function,

init_centers,
seed = NULL,
ITER

Arguments

data

distance

Matrix with dim(data)[1] points of dim(data)[2] dimensions.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Number. Number of groups into which we are going to group the different
points.

centers_function

init_centers

seed

ITER

Value

Returns a list with:

Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers. With grouping we
mean a list. The list component i has a vector with the numbers of the row of
the matrix data where the points belonging to group i are.

Function. This function designs how we are going to calculate the initial centers.
The input must be the data, distance and k and the output must be a matrix
where each row has the center of one group.

Number. Number to fix a seed and be able to reproduce your results.

Number. Maximum number of iterations.

Hartigan_and_Wong_total 19

 centers: the information of the centers updated. Matrix with dim(centers)[1] centers of
dim(centers)[2] dimensions.

* grouping: the information of the groups updated. List. Each component of the list contains a
vector with the points that belong to that group. More specifically, the list component i has a
vector with the numbers of the row of the matrix data where the points belonging to group i
are.

References

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics), 28(1), 100-108.

Examples
set.seed(451)
data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),

matrix(runif(20,50,70), nrow = 2, ncol = 10))
k=3
seed=5

Hartigan_and_Wong(data,
Euclideandistance,
K,
centers_function_mean,
init_centers_random,
seed=seed,
10)

Hartigan_and_Wong_total
Hartigan and Wong algorithm

Description

This function apply the Hartigan_and_Wong to different number of groups and calculates quality
metrics as Silhouette.

Usage

Hartigan_and_Wong_total(
data,
distance,
centers_function,
init_centers,
seed = NULL,

20 Hartigan_and_Wong_total
ITER,
KK = 10,
index = "DaviesBouldin”,
k = NULL
)
Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
centers_function
Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers. With grouping we
mean a list. The list component i has a vector with the numbers of the row of
the matrix data where the points belonging to group i are.
init_centers Function. This function designs how we are going to calculate the initial centers.
The input must be the data, distance and k and the output must be a matrix
where each row has the center of one group.
seed Number. Number to fix a seed and be able to reproduce your results.
ITER Number. Maximum number of iterations.
KK Number. Calculates the algorithm for the number of groups 2,3,....KK. Default
KK=10.
index Character. If index="Silhouette"” the function returns the results obtained
with the number of groups (between 2 and KK) that maximize the Silhouette in-
dex. If index="DaviesBouldin" the function returns the results obtained with
the number of groups (between 2 and KK) that minimize the Davies Bouldin
index. If index="Dunn" the function returns the results obtained with the num-
ber of groups (between 2 and KK) that maximize the Dunn index. Default:
"DaviesBouldin".
k Number. If k is not NULL the function returns the results obtained with k
groups.
Value

Returns a list with:

e Number_of_groups: Number of groups took into account to cluster.

* Output_of_grouping: list with the centers and the clusters.

* Quality: vector with the Silhouette index, Davies Bouldin Index, the Dunn index, the Within
Cluster Sum (WCS) and the time (in seconds) that the function Hartigan_and_Wong needs to
be executed. The WCS is equal to the sum of the distance of each point to the center of its

group.

init_centers_hw 21

References

Hartigan, J. A, & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the royal statistical society. series ¢ (applied statistics), 28(1), 100-108.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

RES=Hartigan_and_Wong_total (data,
RelativeDistance,
centers_function_RelativeDistance,
init_centers_random,
seed=10,
ITER=10,
KK=4,
index="DaviesBould",
k=NULL)

init_centers_hw Initializing the centers

Description

This function initializes the cluster centers following the procedure described in the ‘Additional
Comments’ section of Hartigan and Wong (1979), without restricting the method to the use of
Euclidean distance.

Usage

init_centers_hw(data, distance, k, centers_function)

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
k Number. Number of groups into which we are going to group the different

points.
centers_function

Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the

22 init_centers_random

centers. This matrix will have as many rows as centers. With grouping we
mean a list. The list component i has a vector with the numbers of the row of
the matrix data where the points belonging to group i are.

Value

Returns a matrix where each row is the center of a group.

References

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the royal statistical society. series ¢ (applied statistics), 28(1), 100-108.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

k=3
seed=5

centr=init_centers_hw(data, Euclideandistance,k,centers_function_mean)

init_centers_random Initializing the centers

Description

This function initializes the centers of the groups randomly.

Usage

init_centers_random(data, distance, k, centers_function)

Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
k Number. Number of groups into which we are going to group the different

points.

centers_function
Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers. With grouping we
mean a list. The list component i has a vector with the numbers of the row of
the matrix data where the points belonging to group i are.

kmedois_distance

Value

23

Returns a matrix where each row is the center of a group.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

k=3
seed=5

centr=init_centers_random(data, EuclideanDistance,k,centers_function_mean)

kmedois_distance

K-Medoids

Description

This function apply the K-Medoids with any distance to different number of groups and calculates
quality metrics as Silhouette.

Usage

kmedois_distance(data, distance, KK = 10, index = "DaviesBouldin"”, k = NULL)

Arguments

data

distance

KK

index

Matrix with dim(data)[1] points of dim(data)[2] dimensions.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Number. Calculates the K-Medoids for the number of groups 2,3....,KK. Default
KK=10.

Character. If index="Silhouette” the function returns the results obtained
with the number of groups (between 2 and KK) that maximize the Silhouette in-
dex. If index="DaviesBouldin" the function returns the results obtained with
the number of groups (between 2 and KK) that minimize the Davies Bouldin
index. If index="Dunn" the function returns the results obtained with the num-
ber of groups (between 2 and KK) that maximize the Dunn index. Default:
"DaviesBouldin".

Number. If k is not NULL the function returns the results obtained with the
K-Medoids for k groups.

24 ManbhattanDistance

Value

Returns a list with:

* Number_of_groups: Number of groups took into account to cluster.
* Output_of_grouping: list with the centers and the clusters.

* Quality: vector with the Silhouette index, Davies Bouldin Index, the Dunn index, the Within
Cluster Sum (WCS) and the time (in seconds) that the algorithm needs to be executed. The
WCS is equal to the sum of the distance of each point to the center of its group.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

kmedois_distance(data, RelativeDistance, KK=4, index="Silhouette”, k=NULL)

kmedois_distance(data, RelativeDistance, k=2)

ManhattanDistance Manhattan distance

Description

This function calculates the Manhattan distance between two vectors

Usage

ManhattanDistance(x, y)

Arguments
X vector
y vector
Value

A number with the distance between x and y.

Examples

ManhattanDistance(c(1,2,3), c(4,5,6))

NEC

25

NEC

Non Euclidean Algorithm to Cluster

Description

We give initial centers, calculate the distance between each point and each center and assign each
point to the center with minimum distance. Calculate the center of the group and repeat the process.
The process is stopped when the distance between a center and the previous one is small than COTA
or the maximum number of iterations is reached.

Usage

NEC(data, distance, k, centers_function, init_centers, seed = NULL, ITER, COTA)

Arguments

data
distance

Matrix with dim(data)[1] points of dim(data)[2] dimensions.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
Number. Number of groups into which we are going to group the different
points.

centers_function

init_centers

seed
ITER
COTA

Value

Returns a list with:

Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers. With grouping we
mean a list. The list component i has a vector with the numbers of the row of
the matrix data where the points belonging to group i are.

Function. This function designs how we are going to calculate the initial centers.
The input must be the data, distance and k and the output must be a matrix
where each row has the center of one group.

Number. Number to fix a seed and be able to reproduce your results.
Number. Maximum number of iterations.

Number. The process is stopped when the distance between a center and the
previous one is smaller than COTA.

* FHW_output; is a list with

— centers: the information of the centers updated. Matrix with dim(centers)[1] centers
of dim(centers)[2] dimensions.

— grouping: the information of the groups updated. List. Each component of the list con-
tains a vector with the points that belong to that group. More specifically, the list com-
ponent i has a vector with the numbers of the row of the matrix data where the points
belonging to group i are.

26

NEC total

» Stop_Criteria: returns the distance between one center and the previous one for all the itera-

tions

» Chanche_yes_no: matrix, in the position [i, j] returns "yes" if the point i have changed its

group in the iteration j and return "no" if the point have not changed.

* all_output: is a list with the information of the center and the groups of each iteration of the

process

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),

matrix(runif(20,20,30), nrow = 2, ncol
matrix(runif(20,50,70), nrow = 2, ncol

seed=5

02=NEC(data,
RelativeDistance,
k,
centers_function_RelativeDistance,
init_centers_random,
seed=seed,
10,
0.01)

10),
10))

NEC_total NEC algorithm

Description

This function apply the NEC to different number of groups and calculates quality metrics as Sil-

houette.

Usage

NEC_total(
data,
distance,
centers_function,
init_centers,
seed = NULL,
ITER,
COTA,
KK = 10,
index = "DaviesBouldinIndex",
k = NULL

NEC total

Arguments

data

distance

27

Matrix with dim(data)[1] points of dim(data)[2] dimensions.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

centers_function

init_centers

seed
ITER
COTA

KK

index

Value

Returns a list with:

Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers. With grouping we
mean a list. The list component i has a vector with the numbers of the row of
the matrix data where the points belonging to group i are.

Function. This function designs how we are going to calculate the initial centers.
The input must be the data, distance and k and the output must be a matrix
where each row has the center of one group.

Number. Number to fix a seed and be able to reproduce your results.
Number. Maximum number of iterations.

Number. The process is stopped when the distance between a center and the
previous one is smaller than COTA.

Number. Calculates the algorithm for the number of groups 2,3,...,KK. Default
KK=10.

Character. If index="Silhouette” the function returns the results obtained
with the number of groups (between 2 and KK) that maximize the Silhouette in-
dex. If index="DaviesBouldin" the function returns the results obtained with
the number of groups (between 2 and KK) that minimize the Davies Bouldin
index. If index="Dunn" the function returns the results obtained with the num-
ber of groups (between 2 and KK) that maximize the Dunn index. Default:
"DaviesBouldin".

Number. If k is not NULL the function returns the results obtained with k
groups.

* Number_of_groups: Number of groups took into account to cluster.

e Qutput_of_grouping: list with the centers and the clusters.

* Quality: vector with the Silhouette index, Davies Bouldin Index, the Dunn index, the Within
Cluster Sum (WCS) and the time (in seconds) that algorithm needs to be executed. The WCS
is equal to the sum of the distance of each point to the center of its group.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

28 Number_of failes

RES=NEC_total(data,
RelativeDistance,
centers_function_RelativeDistance,
init_centers_random,
seed=10,
ITER=10,
0.01,
KK=4,
index="DaviesBould",
K=NULL)

Number_of_failes Comparison of groupings

Description

This function compares the real clustering with a clustering obtained with some mathematical
method. For each group, this function calculates the number of components that are in the ex-
pected grouping that are not in the real grouping. This function adds this value for all groups. It
calculates it for all possible combinations of groups and returns the minimum value.

Usage

Number_of_failes(grouping_exact, grouping_obtained)

Arguments

grouping_exact List. Each component of the list contains a vector with the components of one
group. This list represents the actual grouping of the data.

grouping_obtained
List. Each component of the list contains a vector with the components of one
group. This list represents the grouping obtained by some mathematical method.

Value

Returns a number with the quantity of points that are misclassified in the grouping_obtained.

Examples

grouping_exact=list(c(1,2,3,4,5),c(6,7),c(8,9))
grouping_obtained=1ist(c(1,3,7),c(2,4,6),c(8,9,5))

Number_of_failes(grouping_exact, grouping_obtained)

RelativeDistance 29

RelativeDistance Relative Distance

Description

This function calculates the Relative Distance between two vectors.

Usage

RelativeDistance(vectl, vect2)

Arguments
vectl vector
vect?2 vector
Value

A number with the distance between vect1 and vect2.

Examples

RelativeDistance(c(1,2,3), c(4,5,6))

Silhouette Silhouette

Description

This function calculates the Silhouette as is defined in Rousseeuw (1987) without imposing that the
use of the euclidean distance. This allows calculating the Silhouette using different distances. Note
that the Silhouette must be calculated using a distance that is a a ratio scale (Rousseeuw, 1987).

Usage

Silhouette(data, FHW_output, distance)

30

Arguments

data
FHW_output

distance

Value

Step4

Matrix with dim(data)[1] points of dim(data)[2] dimensions.
List. List with:

* centers: the information of the centers updated.

 grouping: the information of the groups updated. List. Each component of
the list contains a vector with the points that belong to that group. More
specifically, the list component i has a vector with the numbers of the row
of the matrix data where the points belonging to group i are.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Returns a vector. The component i contains the Silhouette value of the point in the row i of the data

matrix.

References

Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math., 20, 53-65.

Examples

set.seed(451)

data=rbind(matrix(runif(20,1,5), nrow = 2, ncol = 10),
matrix(runif(20,20,30), nrow = 2, ncol = 10),
matrix(runif(20,50,70), nrow = 2, ncol = 10))

k=3
seed=5

FHW_output=Hartigan_and_Wong(data,

Euclideandistance,

K,
centers_function_mean,
init_centers_random,
seed=seed,

10)

Silhouette(data, FHW_output, Euclideandistance)

Step4

Step 4 of the Hartigan and Wong algorithm

Step4 31

Description

This function implements the Step 4 of the Hartigan and Wong (Hartigan and Wong, 1979) algo-
rithm without imposing that the use of the euclidean distance and without imposing that the centers
of the groups are calculated by averaging the points. This function allows other distances to be used
and allows the centers of the groups to be calculated in different ways.

Usage

Step4(
data,
centers,
grouping,
LIVE_SET_ original,
distance,
centers_function,
Ic12_change,

index
)
Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
centers Matrix with dim(centers)[1] centers of dim(centers)[2] dimensions.
grouping List. Each component of the list contains a vector with the points that belong to

that group. More specifically, the list component i has a vector with the numbers
of the row of the matrix data where the points belonging to group i are.

LIVE_SET_original
Vector that contains the groups that have been modified in the previous Step 6.
The Step 6 is described in Hartigan and Wong (1979).

distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

centers_function

Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers.

Icl12_change Matrix. The first row contains the IC1 of each point. The second column con-
tains the IC2 of each point. IC1 and IC2 are the closets and second closest
cluster centers.

index Number. When a point is reallocated, index becomes zero.
Value
Returns a list with:

* centers: the information of the centers updated. Matrix with dim(centers)[1] centers of
dim(centers)[2] dimensions.

32 Step4

¢ IClandIC2: the information of the IC1 and IC2 updated. Matrix. The first row contains the
IC1 of each point. The second column contains the IC2 of each point. IC1 and IC2 are the
closets and second closest cluster centers.

* grouping: the information of the groups updated. List. Each component of the list contains a
vector with the points that belong to that group. More specifically, the list component i has a
vector with the numbers of the row of the matrix data where the points belonging to group i
are.

» Live_set: Vector. Contains the groups that have been modified during the Step 4.

* no_Change: vector with the points that do not change its group. More specifically, contains
the row of the matrix data where these points are.

References

Hartigan, J. A, & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the royal statistical society. series ¢ (applied statistics), 28(1), 100-108.

Examples

set.seed(231)
datal=gtools::rdirichlet(10,c(1,1,4,4,20,20))
data=t(datal)

k=3

seed=5

if(lis.null(seed)){
set.seed(seed)

}

centers <- datal[sample(1:nrow(data), k), 1

#We calculate the distance between each row of the data matrix and the centers
Dist_e_cent=matrix(@,dim(data)[1],dim(centers)[1]1)

for (i in 1:(dim(data)[1]1)){

for (j in 1:(dim(centers)[1]1)){

Dist_e_cent[i, jl=Euclideandistance(datali,],centers[j,])

3

3

Ic12=Dist_IC1_IC2(Dist_e_cent)
Ic12_change=Ic12
Group=Ic12[,1]
grouping<-list()

for(i in 1:(max(Group))){
grouping[[i]]=which(Group==i)
3

#Update the clusters centers.
centers=centers_function_mean(data, grouping)

Step6 33

#live set.
LIVE_SET_originall=c(1:1length(grouping))

index=0

P1=Step4(data,
centers,
grouping,
LIVE_SET_originall,
Euclideandistance,
centers_function_mean,
Ic12_change,
index)

Step6 Step 6 of the Hartigan and Wong algorithm

Description

This function implements the Step 6 of the Hartigan and Wong (Hartigan and Wong, 1979) algo-
rithm without imposing that the use of the euclidean distance and without imposing that the centers
of the groups are calculated by averaging the points. This function allows other distances to be used
and allows the centers of the groups to be calculated in different ways.

Usage

Step6(
data,
centers,
grouping,
distance,
centers_function,
Ic12_change,

Ic12,
index
)
Arguments
data Matrix with dim(data)[1] points of dim(data)[2] dimensions.
centers Matrix with dim(centers)[1] centers of dim(centers)[2] dimensions.
grouping List. Each component of the list contains a vector with the points that belong to

that group. More specifically, the list component i has a vector with the numbers
of the row of the matrix data where the points belonging to group i are.

34 Step6
distance Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.
centers_function
Function. This function designs how the centers of the groups will be calculated.
It must have as input data and grouping and as output a matrix that has the
centers. This matrix will have as many rows as centers.

Ic12_change Matrix. Contains IC1 and IC2 after the Step 4 is carried out. The first row
contains the IC1 of each point. The second column contains the IC2 of each
point. IC1 and IC2 are the closets and second closest cluster centers.

Icl12 Matrix. Contains IC1 and IC2 before the Step 4 is carried out. The first row
contains the IC1 of each point. The second column contains the IC2 of each
point. IC1 and IC2 are the closets and second closest cluster centers.

index Number. When a point is reallocated, index becomes zero.

Value
Returns a list with:
* centers: the information of the centers updated. Matrix with dim(centers)[1] centers of
dim(centers)[2] dimensions.
e IClandIC2: the information of the IC1 and IC2 updated. Matrix. The first row contains the
IC1 of each point. The second column contains the IC2 of each point. IC1 and IC2 are the
closets and second closest cluster centers.
* grouping: the information of the groups updated. List. Each component of the list contains a
vector with the points that belong to that group. More specifically, the list component i has a
vector with the numbers of the row of the matrix data where the points belonging to group i
are.
» Live_set: Vector. Contains the groups that have been modified during the Step 6.
¢ index: number. The information of index updated.
References
Hartigan, J. A, & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the royal statistical society. series ¢ (applied statistics), 28(1), 100-108.
Examples

set.seed(231)
datal2=gtools::rdirichlet(10,c(1,1,4,4,20,20))
datal=t(datal2)

k=3

seed=5

distance<- function(vectl, vect2){
sqrt(sum((vectl-vect2)*2))

}

centers_function<-function(data, grouping){

to_minimize 35

center=matrix(Q,length(grouping), dim(data)[2])
for (i in 1:(length(grouping))){

if(length(grouping[[i11)==1){
center[i,]=datalgrouping[[il],]
Yelse{
center[i,]J=apply(datalgrouping[[i]],],2,mean)
}
}

return(center)

}

if(!is.null(seed)){
set.seed(seed)

3
centers <- datal[sample(1:nrow(datal), k),]

#We calculate the distance between each row of the data matrix and the centers

Dist_e_cent=matrix(0,dim(datal)[1],dim(centers)[1])

for (i in 1:(dim(datal)[11)){

for (j in 1:(dim(centers)[1]1)){
Dist_e_cent[i,jl=distance(datal[i,],centers[j,])

3

3

#We obtain the IC1 and IC2 for each taxa
Ic12_change=Dist_IC1_IC2(Dist_e_cent)
Group=Ic12_change[,1]

grouping<-list()

for(i in 1:(max(Group))){
grouping[[i]]=which(Group==i)

3

#Update the clusters centers.
centers=centers_function(datal, grouping)

Ic12=cbind(c(1,1,3,3,2,2),c(1,2,1,2,3,3))

P1=Step6(datal, centers, grouping, distance, centers_function, Ic12_change,Ic12, @)

to_minimize Sum of the distance between the points in a group and a given center.

Description

This function calculates the sum of the distance between the points in a group and a given center
of the group. The function calculates these values for all groups and then adds them together. The
user can choose which distance to choose.

36

Usage

vector_a_lista

to_minimize(inicenters_v, data, grouping, distance)

Arguments

inicenters_v

data

grouping

distance

Value

Vector. Vector with the centers of the groups that has more than one point.
The centres are arranged by the number of the group. If a group has only one
component, this center is not included in the vector. The vector contain all the
components of the center of the first group (if this group has more than one
point, otherwise the vector will start with the components of the center of the
second group), then all the components of the center of the second group (if this
group has more than one point), then all the components of the third group (if
this group has more than one point), and so on until the center of all groups with
more than one point are introduced.

Matrix with dim(data)[1] points of dim(data)[2] dimensions.

List. Each component of the list contains a vector with the points that belong to
that group. More specifically, the list component i has a vector with the numbers
of the row of the matrix data where the points belonging to group i are.

Function. This function designs how the distance is going to be calculated. It
must have as input two vectors and as output the distance of these vectors.

Returns a number. First this function calculates the distance between each point of a group and its
given center and sum these values. Then, the function sum the values obtained for each group. This

is the output.

Examples

grouping=list(c(1,2,3),c(4,5),c(6,7))

set.seed(451)

data=t(gtools::rdirichlet(10, c(1,1,1,4,4,9,9)))
inicenters=runif(dim(data)[2]*length(grouping), 0.1, 0.9)
inicenters_v=as.vector(inicenters)

to_minimize(inicenters_v, data, grouping, Euclideandistance)

vector_a_lista

Vector to list

Description

This function returns a list. The component of the list i contains the positions of the vector that are

equal to i.

Usage

vector_a_lista(clustering_vector)

vector_a_lista

Arguments

clustering_vector
Vector

Value

Returns a list. The component of the list i contains the positions of the vector that are equal to i.

Examples

vect=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3)
vector_a_lista(vect)

37

Index

add_unique_numbers, 2 to_minimize, 35
add_unique_numbers2, 3
AitchisonDistance, 4 vector_a_lista, 36

BrayCurtisDissimilarity, 4

centers_function_mean, 5
centers_function_RelativeDistance, 6
ClustPlot, 6

d_i_other_group, 13
DaviesBouldinIndex, 7
Dist_IC1_IC2,11
DistanceBetweenGroups, 8
DistanceSameGroup, 10
DosMinimos, 11
DunnIndex, 12

ECDentroCluster, 14
ECDentroCluster3, 15
encontrar_componente, 16
Euclideandistance, 17

Hartigan_and_Wong, 18
Hartigan_and_Wong_total, 19

init_centers_hw, 21
init_centers_random, 22

kmedois_distance, 23
ManhattanDistance, 24

NEC, 25
NEC_total, 26
Number_of_failes, 28

RelativeDistance, 29
Silhouette, 29

Step4, 30
Step6, 33

38

	add_unique_numbers
	add_unique_numbers2
	AitchisonDistance
	BrayCurtisDissimilarity
	centers_function_mean
	centers_function_RelativeDistance
	ClustPlot
	DaviesBouldinIndex
	DistanceBetweenGroups
	DistanceSameGroup
	Dist_IC1_IC2
	DosMinimos
	DunnIndex
	d_i_other_group
	ECDentroCluster
	ECDentroCluster3
	encontrar_componente
	Euclideandistance
	Hartigan_and_Wong
	Hartigan_and_Wong_total
	init_centers_hw
	init_centers_random
	kmedois_distance
	ManhattanDistance
	NEC
	NEC_total
	Number_of_failes
	RelativeDistance
	Silhouette
	Step4
	Step6
	to_minimize
	vector_a_lista
	Index

