
Package ‘RNiftyReg’
July 18, 2023

Version 2.8.1

Date 2023-07-12

Title Image Registration Using the 'NiftyReg' Library

Maintainer Jon Clayden <code@clayden.org>

Imports Rcpp, RNifti, ore

Suggests jpeg, loder, mmand, tinytest, covr

LinkingTo Rcpp, RcppEigen, RNifti

Description Provides an 'R' interface to the 'NiftyReg' image registration tools
<https://github.com/KCL-BMEIS/niftyreg>. Linear and nonlinear registration
are supported, in two and three dimensions.

License GPL-2

URL https://github.com/jonclayden/RNiftyReg

BugReports https://github.com/jonclayden/RNiftyReg/issues

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Jon Clayden [cre, aut] (<https://orcid.org/0000-0002-6608-0619>),
Marc Modat [aut],
Benoit Presles [aut],
Thanasis Anthopoulos [aut],
Pankaj Daga [aut]

Repository CRAN

Date/Publication 2023-07-18 17:50:06 UTC

R topics documented:
applyTransform . 2
buildAffine . 3
composeTransforms . 4
decomposeAffine . 5

1

https://github.com/KCL-BMEIS/niftyreg
https://github.com/jonclayden/RNiftyReg
https://github.com/jonclayden/RNiftyReg/issues
https://orcid.org/0000-0002-6608-0619

2 applyTransform

deformationField . 6
forward . 7
halfTransform . 8
invertAffine . 8
isAffine . 9
isImage . 10
jacobian . 11
niftyreg . 11
niftyreg.linear . 14
niftyreg.nonlinear . 16
readAffine . 19
readNifti . 20
saveTransform . 21
similarity . 21
translate . 22
writeAffine . 23

Index 25

applyTransform Apply a precomputed transformation

Description

This function allows a precomputed transformation to be applied to a new image or set of points.

Usage

applyTransform(transform, x, interpolation = 3L, nearest = FALSE,
internal = FALSE)

Arguments

transform A transform, possibly obtained from forward or reverse.

x A numeric vector, representing a pixel/voxel location in source space, or a ma-
trix with rows representing such points, or an image with the same dimensions
as the original source image.

interpolation A single integer specifying the type of interpolation to be applied to the final
resampled image. May be 0 (nearest neighbour), 1 (trilinear) or 3 (cubic spline).
No other values are valid.

nearest Logical value: if TRUE and x contains points, the nearest voxel centre location in
target space will be returned. Otherwise a more precise subvoxel location will
be given.

internal If FALSE, the default, the returned image will be returned as a standard R array.
If TRUE, it will instead be an object of class "internalImage", containing only
basic metadata and a C-level pointer to the full image. (See also readNifti.)
This can occasionally be useful to save memory.

buildAffine 3

Details

Points may be transformed from source to target space exactly under an affine transformation, but
nonlinear transformation is inexact. Its accuracy will depend to some extent on the density of the
control point grid and the geometry of the deformation in the vicinity of the points of interest.
Nevertheless, it should be quite sufficient for most purposes.

The method is to first convert the control points to a deformation field (cf. deformationField),
which encodes the location of each target space voxel in the source space. The target voxel closest to
the requested location is found by searching through this deformation field, and returned if nearest
is TRUE or it coincides exactly with the requested location. Otherwise, a block of four voxels in each
dimension around the point of interest is extracted from the deformation field, and the final location
is estimated by local cubic spline regression.

Value

A resampled image or matrix of transformed points.

Author(s)

Jon Clayden <code@clayden.org>

See Also

niftyreg.linear, niftyreg.nonlinear

buildAffine Build an affine matrix up from its constituent transformations

Description

This function does the opposite to decomposeAffine, building up an affine matrix from its compo-
nents. It can be useful for testing, or for rescaling images.

Usage

buildAffine(translation = c(0, 0, 0), scales = c(1, 1, 1), skews = c(0,
0, 0), angles = c(0, 0, 0), source = NULL, target = NULL,
anchor = c("none", "origin", "centre", "center"))

Arguments

translation Translations along each axis, in pixunits units. May also be a list, such as that
produced by decomposeAffine, with elements for translation, scales, skews and
angles.

scales Scale factors along each axis.

skews Skews in the XY, XZ and YZ planes.

4 composeTransforms

angles Roll, pitch and yaw rotation angles, in radians. If source is two-dimensional, a
single angle will be interpreted as being in the plane as expected.

source The source image for the transformation (required).

target The target image for the transformation. If NULL (the default), it will be equal to
source, or a rescaled version of it if any of the scales are not 1. In the latter
case the scales will be reset back to 1 to produce the right effect.

anchor The fixed point for the transformation. Setting this parameter to a value other
than "none" will override the translation parameter, with the final translation
set to ensure that the requested point remains in the same place after transfor-
mation.

Value

A 4x4 affine matrix representing the composite transformation. Note that NiftyReg affines logically
transform backwards, from target to source space, so the matrix may be the inverse of what is
expected.

Author(s)

Jon Clayden <code@clayden.org>

See Also

decomposeAffine, isAffine

composeTransforms Compose transformations

Description

Compute the composition of two or more transforms, the single transform that combines their ef-
fects in order.

Usage

composeTransforms(...)

Arguments

... Affine or nonlinear transforms, possibly obtained from forward or reverse.

Value

The composed transform. If all arguments are affines then the result will also be an affine; otherwise
it will be a deformation field.

decomposeAffine 5

Note

The source image for the composed transform is generally the source image from the first transform,
and the target is the target image from the second transform. However, the target image attached to
half transforms (as calculated by halfTransform) generally has a modified xform, compared to the
original target. Therefore, composing a half transform with itself may not be exactly equivalent to
the original.

Author(s)

Jon Clayden <code@clayden.org>

See Also

niftyreg.linear, niftyreg.nonlinear, deformationField

decomposeAffine Decompose an affine matrix into its constituent transformations

Description

An affine matrix is composed of translation, scale, skew and rotation transformations. This function
extracts these components, after first inverting the matrix so that it transforms from source to target
space.

Usage

decomposeAffine(affine)

Arguments

affine A 4x4 matrix representing an affine transformation matrix.

Value

A list with components:

scaleMatrix A 3x3 matrix representing only the scale operation embodied in the full affine trans-
formation.

skewMatrix A 3x3 matrix representing only the skew operation embodied in the full affine trans-
formation.

rotationMatrix A 3x3 matrix representing only the rotation operation embodied in the full affine
transformation.

translation A length-3 named numeric vector representing the translations (in pixunits units) in
each of the X, Y and Z directions.

scales A length-3 named numeric vector representing the scale factors in each of the X, Y and Z
directions. Scale factors of 1 represent no effect.

6 deformationField

skews A length-3 named numeric vector representing the skews in each of the XY, XZ and YZ
planes.

angles A length-3 named numeric vector representing the rotation angles (in radians) about each
of the X, Y and Z directions, i.e., roll, pitch and yaw.

Note

The decomposition is not perfect, and there is one particular degenerate case when the pitch angle
is very close to pi/2 radians, known as “Gimbal lock”. In this case the yaw angle is arbitrarily set
to zero.

Affine matrices embodying rigid-body transformations include only 6 degrees of freedom, rather
than the full 12, so skews will always be zero and scales will always be unity (to within rounding
error). Likewise, affine matrices derived from 2D registration will not include components relating
to the Z direction.

Author(s)

Jon Clayden <code@clayden.org>

See Also

buildAffine, isAffine

deformationField Calculate the deformation field for a transformation

Description

This function is used to calculate the deformation field corresponding to a specified linear or nonlin-
ear transformation. The deformation field gives the location in source image space corresponding
to the centre of each voxel in target space. It is used as a common form for linear and nonlinear
transformations, and allows them to be visualised.

Usage

deformationField(transform, jacobian = TRUE)

Arguments

transform A transform, possibly obtained from forward or reverse.

jacobian A logical value: if TRUE, a Jacobian determinant map is also calculated and
returned in an attribute.

Value

An "internalImage" representing the deformation field. If requested, the Jacobian map is stored
in an attribute, which can be extracted using the jacobian accessor function.

forward 7

Author(s)

Jon Clayden <code@clayden.org>

See Also

niftyreg.linear, niftyreg.nonlinear

forward Extract forward and reverse transformations

Description

These functions extract forward and reverse transformations in a form compatible with applyTransform
and other functions. They are (S3) generic, but only methods for "niftyreg" objects currently ex-
ist.

Usage

forward(object, ...)

S3 method for class 'niftyreg'
forward(object, i = 1L, ...)

reverse(object, ...)

S3 method for class 'niftyreg'
reverse(object, i = 1L, ...)

Arguments

object An R object.

... Additional arguments. Not currently used.

i The transformation number to extract. There will only be more than one in the
case of multiple registration.

Value

A transformation object, an image or affine matrix, with suitable attributes giving pointers to source
and target images. If there is no transformation information in the object then NULL is returned.

Author(s)

Jon Clayden <code@clayden.org>

See Also

niftyreg, applyTransform

8 invertAffine

halfTransform Calculate a half transformation

Description

This function calculates the half-way transformation corresponding to its argument. Applying this
transformation results in points or images in a space halfway between the original source and target
images, which can be a useful common space in some applications.

Usage

halfTransform(transform)

Arguments

transform A transform, possibly obtained from forward or reverse.

Value

The half-way transform, in a similar format to transform.

Author(s)

Jon Clayden <code@clayden.org>

See Also

niftyreg.linear, niftyreg.nonlinear

invertAffine Invert an affine matrix

Description

This function is used to invert an affine matrix. It is a wrapper around solve, which additionally
sets appropriate attributes.

Usage

invertAffine(affine)

Arguments

affine An existing 4x4 affine matrix.

isAffine 9

Value

The inverted affine matrix.

Author(s)

Jon Clayden <code@clayden.org>

See Also

solve

Examples

affine <- readAffine(system.file("extdata","affine.txt",package="RNiftyReg"))
print(affine)
print(invertAffine(affine))

isAffine Create, test for and print affine matrices

Description

isAffine returns a logical value indicating whether its argument is, or resembles, a 4x4 affine
matrix. asAffine converts other objects to the affine class, attaching or updating the source and
target image attributes. Affine transformations are a class of linear transformations which preserve
points, straight lines and planes, and may consist of a combination of rotation, translation, scale and
skew operations.

Usage

isAffine(object, strict = FALSE)

asAffine(object, source = NULL, target = NULL, ...)

S3 method for class 'niftyreg'
asAffine(object, source = NULL, target = NULL, i = 1L,
...)

S3 method for class 'affine'
asAffine(object, source = NULL, target = NULL, ...)

S3 method for class 'niftiImage'
asAffine(object, source = attr(object, "source"),
target = attr(object, "target"), ...)

Default S3 method:

10 isImage

asAffine(object, source = NULL, target = NULL, ...)

S3 method for class 'affine'
print(x, ...)

Arguments

object An R object.

strict If TRUE, this function just tests whether the object is of class "affine". Other-
wise it also tests for an affine-like 4x4 matrix.

source, target New source and target images for the transformation.

... Additional parameters to methods.

i The transformation number, for niftyreg objects containing more than one.

x An "affine" object.

Details

NiftyReg’s convention is for affine matrices to transform world coordinates (in the sense of voxelToWorld)
from TARGET to SOURCE space, although transforms are logically applied the other way.

Value

For isAffine, a logical value, which is TRUE if object appears to be an affine matrix. For
asAffine, a classed affine object with source and target attributes set appropriately.

Note

2D affines are a subset of 3D affines, and are stored in a 4x4 matrix for internal consistency, even
though a 3x3 matrix would suffice.

Author(s)

Jon Clayden <code@clayden.org>

isImage Test whether an object represents an image

Description

This function tried to determine whether an object is an image that the package knows how to
handle. If its class is "nifti", "niftiImage", "internalImage" or "MriImage", then the result
is always TRUE. Likewise if it has an internal image pointer. If it has no dim attribute, or looks like
an affine matrix, then the result is FALSE. Otherwise the value of the unsure argument is returned.

Usage

isImage(object, unsure = NA)

jacobian 11

Arguments

object An R object.

unsure The value to return if the function can’t tell whether or not the object is an
image.

Author(s)

Jon Clayden <code@clayden.org>

jacobian Extract a Jacobian determinant map

Description

This function extracts the Jacobian determinant map associated with a deformation field.

Usage

jacobian(x)

Arguments

x An R object, probably a deformation field.

Author(s)

Jon Clayden <code@clayden.org>

See Also

deformationField

niftyreg Two and three dimensional image registration

Description

The niftyreg function performs linear or nonlinear registration for two and three dimensional
images. 4D images may also be registered volumewise to a 3D image, or 3D images slicewise to a
2D image. This function is a common wrapper for niftyreg.linear and niftyreg.nonlinear.

12 niftyreg

Usage

niftyreg(source, target, scope = c("affine", "rigid", "nonlinear"),
init = NULL, sourceMask = NULL, targetMask = NULL, symmetric = TRUE,
interpolation = 3L, estimateOnly = FALSE, sequentialInit = FALSE,
internal = NA, precision = c("double", "single"),
threads = getOption("RNiftyReg.threads"), ...)

S3 method for class 'niftyreg'
asNifti(x, ...)

S3 method for class 'niftyreg'
as.array(x, ...)

Arguments

source The source image, an object of class "nifti" or "internalImage", or a plain
array, or a NIfTI-1 filename. Must have 2, 3 or 4 dimensions.

target The target image, an object of class "nifti" or "internalImage", or a plain
array, or a NIfTI-1 filename. Must have 2 or 3 dimensions.

scope A string describing the scope, or number of degrees of freedom (DOF), of the
registration. The currently supported values are "affine" (12 DOF), "rigid"
(6 DOF) or "nonlinear" (high DOF, with the exact number depending on the
image sizes).

init Transformation(s) to be used for initialisation, which may be NULL, for no initial-
isation, or an affine matrix or control point image (nonlinear only). For multiple
registration, where the source image has one more dimension than the target,
this may also be a list whose components are likewise NULL or a suitable initial
transform.

sourceMask An optional mask image in source space, whose nonzero region will be taken as
the region of interest for the registration. Ignored when symmetric is FALSE.

targetMask An optional mask image in target space, whose nonzero region will be taken as
the region of interest for the registration.

symmetric Logical value. Should forward and reverse transformations be estimated simul-
taneously?

interpolation A single integer specifying the type of interpolation to be applied to the final
resampled image. May be 0 (nearest neighbour), 1 (trilinear) or 3 (cubic spline).
No other values are valid.

estimateOnly Logical value: if TRUE, transformations will be estimated, but images will not
be resampled.

sequentialInit If TRUE and source has higher dimensionality than target, transformations
which are not explicitly initialised will begin from the result of the previous
registration.

internal If NA, the default, the final resampled image will be returned as a standard R
array, but control point maps will be objects of class "internalImage", con-
taining only basic metadata and a C-level pointer to the full image. (See also

niftyreg 13

readNifti.) If TRUE, all image-type objects in the result will be internal im-
ages; if FALSE, they will all be R arrays. The default is fine for most purposes,
but using TRUE may save memory, while using FALSE can be necessary if there is
a chance that external pointers will be invalidated, for example when returning
from worker threads.

precision Working precision for the registration. Using single- precision may be desirable
to save memory when coregistering large images.

threads For OpenMP-capable builds of the package, the maximum number of threads to
use.

... Further arguments to niftyreg.linear or niftyreg.nonlinear.

x A "niftyreg" object.

Value

A list of class "niftyreg" with components:

image An array or internal image representing the registered and resampled source image in the
space of the target image. This element is NULL if the estimateOnly parameter is TRUE.

forwardTransforms A list of (linear or nonlinear) transformations from source to target space.

reverseTransforms A list of (linear or nonlinear) transformations from target to source space.

iterations A list of integer vectors, giving the number of iterations completed at each “level” of the
algorithm. Note that for the first level of the linear algorithm specifically, twice the specified
number of iterations is allowed.

source An internal representation of the source image for each registration.

target An internal representation of the target image.

The as.array method for this class returns the image element.

Note

If substantial parts of the target image are zero-valued, for example because the target image has
been brain-extracted, it can be useful to pass it as a target mask as well as the target image, viz.
niftyreg(source, target, targetMask=target).

Author(s)

Jon Clayden <code@clayden.org>

References

Please see niftyreg.linear or niftyreg.nonlinear for references relating to each type of reg-
istration.

See Also

niftyreg.linear and niftyreg.nonlinear, which do most of the work. Also, forward and
reverse to extract transformations, and applyTransform to apply them to new images or points.

14 niftyreg.linear

Examples

Not run:
source <- readNifti(system.file("extdata", "epi_t2.nii.gz",

package="RNiftyReg"))
target <- readNifti(system.file("extdata", "flash_t1.nii.gz",

package="RNiftyReg"))

result <- niftyreg(source, target, scope="affine")

End(Not run)

niftyreg.linear Two and three dimensional linear image registration

Description

The niftyreg.linear function performs linear registration for two and three dimensional images.
4D images may also be registered volumewise to a 3D image, or 3D images slicewise to a 2D image.
Rigid-body (6 degrees of freedom) and affine (12 degrees of freedom) registration can currently be
performed.

Usage

niftyreg.linear(source, target, scope = c("affine", "rigid"), init = NULL,
sourceMask = NULL, targetMask = NULL, symmetric = TRUE, nLevels = 3L,
maxIterations = 5L, useBlockPercentage = 50L, interpolation = 3L,
verbose = FALSE, estimateOnly = FALSE, sequentialInit = FALSE,
internal = NA, precision = c("double", "single"),
threads = getOption("RNiftyReg.threads"))

Arguments

source The source image, an object of class "nifti" or "internalImage", or a plain
array, or a NIfTI-1 filename. Must have 2, 3 or 4 dimensions.

target The target image, an object of class "nifti" or "internalImage", or a plain
array, or a NIfTI-1 filename. Must have 2 or 3 dimensions.

scope A string describing the scope, or number of degrees of freedom (DOF), of the
registration. The currently supported values are "affine" (12 DOF), "rigid"
(6 DOF) or "nonlinear" (high DOF, with the exact number depending on the
image sizes).

init Transformation(s) to be used for initialisation, which may be NULL, for no initial-
isation, or an affine matrix or control point image (nonlinear only). For multiple
registration, where the source image has one more dimension than the target,
this may also be a list whose components are likewise NULL or a suitable initial
transform.

niftyreg.linear 15

sourceMask An optional mask image in source space, whose nonzero region will be taken as
the region of interest for the registration. Ignored when symmetric is FALSE.

targetMask An optional mask image in target space, whose nonzero region will be taken as
the region of interest for the registration.

symmetric Logical value. Should forward and reverse transformations be estimated simul-
taneously?

nLevels A single integer specifying the number of levels of the algorithm that should be
applied. If zero, no optimisation will be performed, and the final affine matrix
will be the same as its initialisation value.

maxIterations A single integer specifying the maximum number of iterations to be used within
each level. Fewer iterations may be used if a convergence test deems the process
to have completed.

useBlockPercentage

A single integer giving the percentage of blocks to use for calculating corre-
spondence at each step of the algorithm. The blocks with the highest intensity
variance will be chosen.

interpolation A single integer specifying the type of interpolation to be applied to the final
resampled image. May be 0 (nearest neighbour), 1 (trilinear) or 3 (cubic spline).
No other values are valid.

verbose A single logical value: if TRUE, the code will give some feedback on its progress;
otherwise, nothing will be output while the algorithm runs. Run time can be
seconds or more, depending on the size and dimensionality of the images.

estimateOnly Logical value: if TRUE, transformations will be estimated, but images will not
be resampled.

sequentialInit If TRUE and source has higher dimensionality than target, transformations
which are not explicitly initialised will begin from the result of the previous
registration.

internal If NA, the default, the final resampled image will be returned as a standard R
array, but control point maps will be objects of class "internalImage", con-
taining only basic metadata and a C-level pointer to the full image. (See also
readNifti.) If TRUE, all image-type objects in the result will be internal im-
ages; if FALSE, they will all be R arrays. The default is fine for most purposes,
but using TRUE may save memory, while using FALSE can be necessary if there is
a chance that external pointers will be invalidated, for example when returning
from worker threads.

precision Working precision for the registration. Using single- precision may be desirable
to save memory when coregistering large images.

threads For OpenMP-capable builds of the package, the maximum number of threads to
use.

Details

This function performs the dual operations of finding a transformation to optimise image alignment,
and resampling the source image into the space of the target image.

16 niftyreg.nonlinear

The algorithm is based on a block-matching approach and Least Trimmed Squares (LTS) fitting.
Firstly, the block matching provides a set of corresponding points between a target and a source
image. Secondly, using this set of corresponding points, the best rigid or affine transformation is
evaluated. This two-step loop is repeated until convergence to the best transformation is achieved.

In the NiftyReg implementation, normalised cross-correlation between the target and source blocks
is used to evaluate correspondence. The block width is constant and has been set to 4 voxels. A
coarse-to-fine approach is used, where the registration is first performed on down-sampled images
(using a Gaussian filter to resample images), and finally performed on full resolution images.

The source image may have 2, 3 or 4 dimensions, and the target 2 or 3. The dimensionality of the
target image determines whether 2D or 3D registration is applied, and source images with one more
dimension than the target (i.e. 4D to 3D, or 3D to 2D) will be registered volumewise or slicewise,
as appropriate. In the latter case the last dimension of the resulting image is taken from the source
image, while all other dimensions come from the target. One affine matrix is returned for each
registration performed.

Value

See niftyreg.

Author(s)

Jon Clayden <code@clayden.org>

References

The algorithm used by this function is described in the following publication.

M. Modat, D.M. Cash, P. Daga, G.P. Winston, J.S. Duncan & S. Ourselin (2014). Global image
registration using a symmetric block-matching approach. Journal of Medical Imaging 1(2):024003.

See Also

niftyreg, which can be used as an interface to this function, and niftyreg.nonlinear for non-
linear registration. Also, forward and reverse to extract transformations, and applyTransform to
apply them to new images or points.

niftyreg.nonlinear Two and three dimensional nonlinear image registration

Description

The niftyreg.nonlinear function performs nonlinear registration for two and three dimensional
images. 4D images may also be registered volumewise to a 3D image, or 3D images slicewise to
a 2D image. The warping is based on free-form deformations, parameterised using an image of
control points.

niftyreg.nonlinear 17

Usage

niftyreg.nonlinear(source, target, init = NULL, sourceMask = NULL,
targetMask = NULL, symmetric = TRUE, nLevels = 3L,
maxIterations = 150L, nBins = 64L, bendingEnergyWeight = 0.001,
linearEnergyWeight = 0.01, jacobianWeight = 0, finalSpacing = c(5, 5,
5), spacingUnit = c("voxel", "world"), interpolation = 3L,
verbose = FALSE, estimateOnly = FALSE, sequentialInit = FALSE,
internal = NA, precision = c("double", "single"),
threads = getOption("RNiftyReg.threads"))

Arguments

source The source image, an object of class "nifti" or "internalImage", or a plain
array, or a NIfTI-1 filename. Must have 2, 3 or 4 dimensions.

target The target image, an object of class "nifti" or "internalImage", or a plain
array, or a NIfTI-1 filename. Must have 2 or 3 dimensions.

init Transformation(s) to be used for initialisation, which may be NULL, for no initial-
isation, or an affine matrix or control point image (nonlinear only). For multiple
registration, where the source image has one more dimension than the target,
this may also be a list whose components are likewise NULL or a suitable initial
transform.

sourceMask An optional mask image in source space, whose nonzero region will be taken as
the region of interest for the registration. Ignored when symmetric is FALSE.

targetMask An optional mask image in target space, whose nonzero region will be taken as
the region of interest for the registration.

symmetric Logical value. Should forward and reverse transformations be estimated simul-
taneously?

nLevels A single integer specifying the number of levels of the algorithm that should be
applied. If zero, no optimisation will be performed, and the final control-point
image will be the same as its initialisation value.

maxIterations A single integer specifying the maximum number of iterations to be used within
each level. Fewer iterations may be used if a convergence test deems the process
to have completed.

nBins A single integer giving the number of bins to use for the joint histogram created
by the algorithm.

bendingEnergyWeight

A numeric value giving the weight of the bending energy term in the cost func-
tion.

linearEnergyWeight

A numeric value giving the weight of the linear energy term in the cost function.

jacobianWeight A numeric value giving the weight of the Jacobian determinant term in the cost
function.

finalSpacing A numeric vector giving the spacing of control points in the final grid, along
the X, Y and Z directions respectively. This is set from the initial control point
image, if one is supplied.

18 niftyreg.nonlinear

spacingUnit A character string giving the units in which the finalSpacing is specified: ei-
ther "voxel" for pixels/voxels, or "world" for real-world units (see pixunits).

interpolation A single integer specifying the type of interpolation to be applied to the final
resampled image. May be 0 (nearest neighbour), 1 (trilinear) or 3 (cubic spline).
No other values are valid.

verbose A single logical value: if TRUE, the code will give some feedback on its progress;
otherwise, nothing will be output while the algorithm runs. Run time can be
seconds or more, depending on the size and dimensionality of the images.

estimateOnly Logical value: if TRUE, transformations will be estimated, but images will not
be resampled.

sequentialInit If TRUE and source has higher dimensionality than target, transformations
which are not explicitly initialised will begin from the result of the previous
registration.

internal If NA, the default, the final resampled image will be returned as a standard R
array, but control point maps will be objects of class "internalImage", con-
taining only basic metadata and a C-level pointer to the full image. (See also
readNifti.) If TRUE, all image-type objects in the result will be internal im-
ages; if FALSE, they will all be R arrays. The default is fine for most purposes,
but using TRUE may save memory, while using FALSE can be necessary if there is
a chance that external pointers will be invalidated, for example when returning
from worker threads.

precision Working precision for the registration. Using single- precision may be desirable
to save memory when coregistering large images.

threads For OpenMP-capable builds of the package, the maximum number of threads to
use.

Details

This function performs the dual operations of finding a transformation to optimise image alignment,
and resampling the source image into the space of the target image (and vice-versa, if symmetric
is TRUE). Unlike niftyreg.linear, this transformation is nonlinear, and the degree of deformation
may vary across the image.

The nonlinear warping is based on free-form deformations. A lattice of equally-spaced control
points is defined over the target image, each of which can be moved to locally modify the mapping
to the source image. In order to assess the quality of the warping between the two images, an
objective function based on the normalised mutual information is used, with penalty terms based on
the bending energy or the squared log of the Jacobian determinant. The objective function value is
optimised using a conjugate gradient scheme.

The source image may have 2, 3 or 4 dimensions, and the target 2 or 3. The dimensionality of the
target image determines whether 2D or 3D registration is applied, and source images with one more
dimension than the target (i.e. 4D to 3D, or 3D to 2D) will be registered volumewise or slicewise,
as appropriate. In the latter case the last dimension of the resulting image is taken from the source
image, while all other dimensions come from the target. One image of control points is returned for
each registration performed.

readAffine 19

Value

See niftyreg.

Note

Performing a linear registration first, and then initialising the nonlinear transformation with the
result (via the init parameter), is highly recommended in most circumstances.

Author(s)

Jon Clayden <code@clayden.org>

References

The algorithm used by this function is described in the following publication.

M. Modat, G.R. Ridgway, Z.A. Taylor, M. Lehmann, J. Barnes, D.J. Hawkes, N.C. Fox & S.
Ourselin (2010). Fast free-form deformation using graphics processing units. Computer Methods
and Programs in Biomedicine 98(3):278-284.

See Also

niftyreg, which can be used as an interface to this function, and niftyreg.linear for linear
registration. Also, forward and reverse to extract transformations, and applyTransform to apply
them to new images or points.

readAffine Read an affine matrix from a file

Description

This function is used to read a 4x4 numeric matrix representing an affine transformation from a file.
It is a wrapper around read.table which additionally ensures that required attributes are set. The
type of the matrix must be specified, as there are differing conventions across software packages.

Usage

readAffine(fileName, source = NULL, target = NULL, type = NULL)

Arguments

fileName A string giving the file name to read the affine matrix from.
source The source image for the transformation. If NULL, the file will be searched for a

comment specifying the path to a NIfTI file.
target The target image for the transformation. If NULL, the file will be searched for a

comment specifying the path to a NIfTI file.
type The type of the affine matrix, which describes what convention is it is stored

with. Currently valid values are "niftyreg" and "fsl" (for FSL FLIRT). If
NULL, the function will look in the file for a comment specifying the type.

20 readNifti

Value

An matrix with class "affine", converted to the NiftyReg convention and with source and target
attributes set appropriately.

Author(s)

Jon Clayden <code@clayden.org>

See Also

read.table, writeAffine

Examples

print(readAffine(system.file("extdata","affine.txt",package="RNiftyReg")))

readNifti Read a NIfTI format file

Description

This function reads files in NIfTI-1 or NIfTI-2 format into R, using the standard NIfTI C library. It
extends the equivalent function from the RNifti package with source and target image parameters.

Usage

readNifti(file, source = NULL, target = NULL, internal = FALSE)

Arguments

file A character vector of file names.
source, target If the specified file contains a transformation, these parameters can be used to

specify the associated source and target images, which are stored in attributes of
the same name. Only used if file is of unit length.

internal Logical value. If FALSE (the default), an array of class "niftiImage", contain-
ing the image pixel or voxel values, will be returned. If TRUE, the return value
will be an object of class "internalImage", which contains only minimal meta-
data about the image. Either way, the return value has an attribute which points
to a C data structure containing the full image.

Value

An array or internal image, with class "niftiImage", and possibly also "internalImage".

Author(s)

Jon Clayden <code@clayden.org>

saveTransform 21

saveTransform Save and load transform objects

Description

These objects save a full transformation object, including source and target image metadata, to a
self-contained RDS file, or load it back from such a file.

Usage

saveTransform(transform, fileName = NULL)

loadTransform(x)

Arguments

transform A transform, possibly obtained from forward or reverse.

fileName The file name to save to. If NULL, the serialised object is returned directly in-
stead.

x A file name to read from, or a serialised transform object.

Value

saveTransform returns a serialised transform object, if no filename is given; otherwise it is called
for its side-effect of writing to file. loadTransform returns a deserialised transform object.

Author(s)

Jon Clayden <code@clayden.org>

See Also

writeAffine, readAffine

similarity Similarity measures between images

Description

This function calculates a similarity measure between two images, after resampling one into the
space of the other. The only supported measure is currently normalised mutual information, which
is also used as a cost function by the registration algorithms.

22 translate

Usage

similarity(source, target, targetMask = NULL, interpolation = 3L,
threads = getOption("RNiftyReg.threads"))

Arguments

source The source image, in any acceptable form.
target The target image. Must have the same dimensionality as the source image.
targetMask An optional mask image in target space, whose nonzero region will be the area

over which the measure is calculated.
interpolation A single integer specifying the type of interpolation to be applied to the source

image when resampling it into the space of the target image. May be 0 (nearest
neighbour), 1 (trilinear) or 3 (cubic spline). No other values are valid.

threads For OpenMP-capable builds of the package, the maximum number of threads to
use.

Value

A single numeric value representing the similarity between the images.

Author(s)

Jon Clayden <code@clayden.org>

See Also

niftyreg

translate Apply simple transformations

Description

These functions allow simple transformations to be applied quickly, or in a chosen order. They
represent simplified interfaces to the buildAffine and applyTransform functions, and are com-
patible with the chaining operator from the popular magrittr package (although performing one
single transformation may be preferable).

Usage

translate(source, translation, ...)

rescale(source, scales, anchor = c("none", "origin", "centre", "center"),
...)

skew(source, skews, anchor = c("none", "origin", "centre", "center"), ...)

rotate(source, angles, anchor = c("none", "origin", "centre", "center"), ...)

writeAffine 23

Arguments

source A 2D or 3D image, in the sense of isImage.

translation Translations along each axis, in pixunits units. May also be a list, such as that
produced by decomposeAffine, with elements for translation, scales, skews and
angles.

... Additional arguments to applyTransform.

scales Scale factors along each axis.

anchor The fixed point for the transformation. Setting this parameter to a value other
than "none" will override the translation parameter, with the final translation
set to ensure that the requested point remains in the same place after transfor-
mation.

skews Skews in the XY, XZ and YZ planes.

angles Roll, pitch and yaw rotation angles, in radians. If source is two-dimensional, a
single angle will be interpreted as being in the plane as expected.

Value

The transformed image.

Author(s)

Jon Clayden <code@clayden.org>

See Also

buildAffine, applyTransform

writeAffine Write an affine matrix to a file

Description

This function is used to write a 4x4 numeric matrix representing an affine transformation to a file. A
comment is also (optionally) written, which specifies the matrix as using the NiftyReg convention,
for the benefit of readAffine.

Usage

writeAffine(affine, fileName, comments = TRUE)

Arguments

affine A 4x4 affine matrix.

fileName A string giving the file name to write the matrix to.

comments Logical value: if TRUE comments are written to the file in lines beginning with
#.

24 writeAffine

Author(s)

Jon Clayden <code@clayden.org>

See Also

write.table, readAffine

Index

affine (isAffine), 9
applyTransform, 2, 7, 13, 16, 19, 22, 23
as.array.niftyreg (niftyreg), 11
asAffine (isAffine), 9
asNifti.niftyreg (niftyreg), 11

buildAffine, 3, 6, 22, 23

composeTransforms, 4

decomposeAffine, 3, 4, 5, 23
deformationField, 3, 5, 6, 11

forward, 2, 4, 6, 7, 8, 13, 16, 19, 21

halfTransform, 5, 8

invertAffine, 8
isAffine, 4, 6, 9
isImage, 10, 23

jacobian, 6, 11

loadTransform (saveTransform), 21

niftyreg, 7, 11, 16, 19, 22
niftyreg.linear, 3, 5, 7, 8, 11, 13, 14, 18, 19
niftyreg.nonlinear, 3, 5, 7, 8, 11, 13, 16, 16

pixunits, 3, 5, 18, 23
print.affine (isAffine), 9

read.table, 20
readAffine, 19, 21, 23, 24
readNifti, 2, 13, 15, 18, 20
rescale (translate), 22
reverse, 2, 4, 6, 8, 13, 16, 19, 21
reverse (forward), 7
rotate (translate), 22

saveTransform, 21
similarity, 21

skew (translate), 22
solve, 8, 9

translate, 22

write.table, 24
writeAffine, 20, 21, 23

25

	applyTransform
	buildAffine
	composeTransforms
	decomposeAffine
	deformationField
	forward
	halfTransform
	invertAffine
	isAffine
	isImage
	jacobian
	niftyreg
	niftyreg.linear
	niftyreg.nonlinear
	readAffine
	readNifti
	saveTransform
	similarity
	translate
	writeAffine
	Index

