Acemoglu and Robinson (2012) say that the Industrial Revolution began in England following the English Bill of Rights of 1689. Maddison Project data suggest that it began close to 40 years earlier when the English chopped the head off of King Charles I for abuse of power as discussed in this brief note,.
The MaddisonData
package for R includes a ggplotPath
function that makes it easy to plot Maddison
project data for any country or group of countries plus a getMaddisonSources
function that makes it easy to get the citations required for
publication of such a plot. We illustrate that here applied to England /
Great Britain / the United Kingdom, whose 3-letter ISO code is
GBR. We select that, because it suggests that the Industrial
Revolution began in England close to 1649, when the English chopped
the head off their King Charles
I for abuse of power, 40 years earlier than the English Bill of
Rights, which Acemoglu and Robinson (2012) claim started the Industrial
Revolution
GDPpc by yearLet’s compute the world leader in gdppc for each year in
MaddisonData.
library(MaddisonData)
Leaders0 <- MaddisonData::MaddisonLeaders()
Leaders00 <- table(Leaders0$ISO)
MaddisonData::MaddisonCountries[names(Leaders00), 1:2]## ISO country
## ARE ARE United Arab Emirates
## AUS AUS Australia
## BEL BEL Belgium
## CHE CHE Switzerland
## CHN CHN China
## ESP ESP Spain
## FRA FRA France
## GBR GBR United Kingdom
## IRQ IRQ Iraq
## ITA ITA Italy
## KWT KWT Kuwait
## LUX LUX Luxembourg
## NLD NLD Netherlands
## NOR NOR Norway
## NZL NZL New Zealand
## QAT QAT Qatar
## SWE SWE Sweden
## USA USA United States
Let’s redo this without countries like ARE,
KWT, and QAT that seem NOT to have been
technology leaders.
Leaders1 <- MaddisonData::MaddisonLeaders(c('ARE', 'KWT', 'QAT'))
Leaders10 <- table(Leaders1$ISO)
MaddisonData::MaddisonCountries[names(Leaders10), 1:2]## ISO country
## AUS AUS Australia
## BEL BEL Belgium
## CHE CHE Switzerland
## CHN CHN China
## ESP ESP Spain
## FRA FRA France
## GBR GBR United Kingdom
## IRQ IRQ Iraq
## ITA ITA Italy
## LUX LUX Luxembourg
## NLD NLD Netherlands
## NOR NOR Norway
## NZL NZL New Zealand
## SWE SWE Sweden
## USA USA United States
Let’s plot.
#library(MaddisonData)
Leaders10d <- subset(MaddisonData, ISO %in% names(Leaders10))
plotLeaders1 <- MaddisonData::ggplotPath(y='gdppc', group='ISO',
data=Leaders10d, scaley=1000)
plotLeaders1## Warning: Removed 13 rows containing missing values or values outside the scale range
## (`geom_path()`).
MaddisonSources for all 15 leaders?
## # A tibble: 6 × 3
## ISO years source
## <chr> <chr> <chr>
## 1 "" 2008- GDP pc: Total Economy Database (TED) of the Conference Bo…
## 2 "" 1990- population:Total Economy Database (TED) of the Conference Bo…
## 3 "BEL" 1 Scheidel, W. and Friesen, S. J., ‘The size of the economy an…
## 4 "BEL" 1500- 1846 Buyst, E. (2011), “Towards Estimates of Long Term Growth in …
## 5 "CHE" 1 Scheidel, W. and Friesen, S. J., ‘The size of the economy an…
## 6 "CHE" 1850-2011 Stohr, Christian (2016), Trading Gains: new estimates of Swi…
How long was each country the leader?
Leaders1$dYrs0 <- with(Leaders1, yearEnd-yearBegin+1)
Leaders1$dYrs1 <- c(tail(Leaders1$yearBegin, -1) - head(Leaders1$yearEnd, -1),
NA)
Leaders1## yearBegin yearEnd gdppc0 gdppc1 ISO dy0 dy1 dYrs0 dYrs1
## 1 1 1 1407.000 1407.000 ITA 0 729 1 729
## 2 730 1000 1466.000 1307.000 IRQ 270 90 271 90
## 3 1090 1150 1221.711 1180.959 CHN 60 102 61 102
## 4 1252 1275 1320.000 1304.000 GBR 23 1 24 1
## 5 1276 1277 1366.393 1417.405 FRA 1 1 2 1
## 6 1278 1296 1346.637 1422.398 ESP 18 1 19 1
## 7 1297 1297 1375.486 1375.486 FRA 0 1 1 1
## 8 1298 1301 1368.422 1352.596 ESP 3 1 4 1
## 9 1302 1303 1608.395 1506.408 FRA 1 1 2 1
## 10 1304 1304 1463.000 1463.000 SWE 0 1 1 1
## 11 1305 1307 1475.734 1512.613 ESP 2 1 3 1
## 12 1308 1310 1580.197 1548.042 FRA 2 1 3 1
## 13 1311 1316 1446.525 1384.888 ESP 5 1 6 1
## 14 1317 1319 1478.000 1451.000 SWE 2 1 3 1
## 15 1320 1324 1394.176 1321.890 ESP 4 1 5 1
## 16 1325 1331 1433.000 1486.000 SWE 6 1 7 1
## 17 1332 1334 1536.290 1568.650 ESP 2 1 3 1
## 18 1335 1336 1611.267 1502.946 FRA 1 1 2 1
## 19 1337 1340 1479.107 1588.135 ESP 3 1 4 1
## 20 1341 1341 1749.107 1749.107 FRA 0 1 1 1
## 21 1342 1343 1690.944 1612.788 ESP 1 1 2 1
## 22 1344 1344 1566.623 1566.623 FRA 0 1 1 1
## 23 1345 1348 1625.028 1480.181 ESP 3 1 4 1
## 24 1349 1356 1459.893 1742.424 NLD 7 1 8 1
## 25 1357 1357 2087.454 2087.454 FRA 0 1 1 1
## 26 1358 1361 1744.207 1780.749 NLD 3 1 4 1
## 27 1362 1363 2006.937 1751.124 FRA 1 1 2 1
## 28 1364 1364 1726.381 1726.381 NLD 0 1 1 1
## 29 1365 1366 1946.410 1787.717 FRA 1 1 2 1
## 30 1367 1371 1901.961 1942.959 NLD 4 1 5 1
## 31 1372 1372 2092.925 2092.925 FRA 0 1 1 1
## 32 1373 1373 1926.916 1926.916 NLD 0 1 1 1
## 33 1374 1374 1797.091 1797.091 FRA 0 1 1 1
## 34 1375 1450 1903.743 2201.426 NLD 75 1 76 1
## 35 1451 1451 2529.992 2529.992 ITA 0 1 1 1
## 36 1452 1467 2276.292 2292.335 NLD 15 1 16 1
## 37 1468 1468 2263.000 2263.000 SWE 0 1 1 1
## 38 1469 1499 2278.075 2360.071 NLD 30 1 31 1
## 39 1500 1500 2338.000 2338.000 BEL 0 1 1 1
## 40 1501 1501 2549.070 2549.070 ITA 0 1 1 1
## 41 1502 1508 2329.768 2461.676 NLD 6 1 7 1
## 42 1509 1509 2570.000 2570.000 SWE 0 1 1 1
## 43 1510 1807 2439.394 3862.745 NLD 297 1 298 1
## 44 1808 1852 3250.000 4626.000 GBR 44 1 45 1
## 45 1853 1853 4798.000 4798.000 AUS 0 1 1 1
## 46 1854 1872 4909.000 5769.000 GBR 18 1 19 1
## 47 1873 1874 6107.000 6126.000 NZL 1 1 2 1
## 48 1875 1881 6596.000 7101.000 AUS 6 1 7 1
## 49 1882 1882 6557.846 6557.846 USA 0 1 1 1
## 50 1883 1891 7133.000 7438.000 AUS 8 1 9 1
## 51 1892 1893 7324.063 6834.250 USA 1 1 2 1
## 52 1894 1894 6851.000 6851.000 GBR 0 1 1 1
## 53 1895 1895 7159.506 7159.506 USA 0 1 1 1
## 54 1896 1896 7211.000 7211.000 GBR 0 1 1 1
## 55 1897 1897 7406.342 7406.342 USA 0 1 1 1
## 56 1898 1898 7500.000 7500.000 GBR 0 1 1 1
## 57 1899 1930 7959.150 10694.982 USA 31 1 32 1
## 58 1931 1934 10055.485 9997.376 CHE 3 1 4 1
## 59 1935 1970 9680.839 23958.000 USA 35 1 36 1
## 60 1971 1971 24486.978 24486.978 CHE 0 1 1 1
## 61 1972 1990 25414.000 36982.000 USA 18 1 19 1
## 62 1991 1995 39198.299 40838.565 LUX 4 1 5 1
## 63 1996 2022 43133.143 88366.219 NOR 26 NA 27 NA
## yearBegin yearEnd gdppc0 gdppc1 ISO dy0 dy1 dYrs0 dYrs1
## 58 1931 1934 10055.485 9997.376 CHE 3 1 4 1
## 59 1935 1970 9680.839 23958.000 USA 35 1 36 1
## 60 1971 1971 24486.978 24486.978 CHE 0 1 1 1
## 61 1972 1990 25414.000 36982.000 USA 18 1 19 1
## 62 1991 1995 39198.299 40838.565 LUX 4 1 5 1
## 63 1996 2022 43133.143 88366.219 NOR 26 NA 27 NA
MadDat1600 <- subset(MaddisonData::MaddisonData, year>1600)
Leaders1600 <- MaddisonData::MaddisonLeaders(c('ARE', 'KWT', 'QAT'),
data=MadDat1600)
table(Leaders1600$ISO)##
## AUS CHE GBR LUX NLD NOR NZL USA
## 3 2 5 1 1 1 1 7
Leaders1600d <- subset(MaddisonData, ISO %in% names(table(Leaders1600$ISO)))
plotLeaders1600 <- MaddisonData::ggplotPath(y='gdppc', group='ISO',
data=Leaders1600d, scaley=1000)
plotLeaders1600 + ggplot2::xlim(1601, 2022)## Warning: Removed 604 rows containing missing values or values outside the scale range
## (`geom_path()`).
Are the three lines before 1800 NLD, GBR,
and USA?
NLD_GBR_USAd <- subset(MaddisonData, ISO %in% c("NLD", 'GBR', 'USA'))
NLD_GBR_USA <- ggplotPath(y='gdppc', group='ISO',
data=NLD_GBR_USAd, scaley=1000)
NLD_GBR_USA + ggplot2::xlim(1301, 2022)## Warning: Removed 50 rows containing missing values or values outside the scale range
## (`geom_path()`).
## Warning: Removed 603 rows containing missing values or values outside the scale range
## (`geom_path()`).
The first two observations in these data are for 1000 and 1252. The
two biggest events in that period are the Norman Conquest and the
Magna Carta. Dates are conveniently given in the Wikipedia
article on “Timeline
of English history”.
Let’s zoom in on 1250 to 1350.
GDPpc declines from 1252 to around 1290 then rebounds
until around 1300, when it mostly stops growing until around 1349, the
year after the Black
Death arrived in England.
UKevents2 <- rbind(UKevents1,
c("1348-06", "Black Death") )
GBR <- subset(MaddisonData, (ISO == 'GBR') & (1347<year) & (year<1451))
(GBRpop <-
plotMaddison('GBR', 'pop'))
head(GBRpop@data)The first three years for which the Maddison project has data on population are 1, 1000, and 1500. The Wikipedia article on the Black Death quotes Geoffrey the Baker as having written in 1350, “The seventh year after it began, it came to England … . [It] so wasted the people that scarce the tenth person of any sort was left alive.” Clearly, no such population crash appears in these data.
GDPpc grew until around 1390 and then was mostly flat
until 1649.
I don’t know what happened around 1390. Richard II ruled from 1377 to 1399. The British economy was stagnant until close to the time that King Charles I was beheaded 1649-01-30.
Let’s zoom on on various parts of this history.
GBRgdppc + ggplot2::coord_cartesian(xlim=c(1640, 1700), ylim=c(1.5, 3))
GBRgdppc + ggplot2::coord_cartesian(xlim=c(1640, 1730), ylim=c(1.5, 3))
GBRgdppc + ggplot2::coord_cartesian(xlim=c(1640, 1920), ylim=c(1.5, 9))
GBRgdppc + ggplot2::coord_cartesian(xlim=c(1900, 2022), ylim=c(6, 40))
GBRgdppc + ggplot2::coord_cartesian(xlim=c(2000, 2022), ylim=c(30, 40)) UKevents3 <- rbind(UKevents2,
c("1377-06-21", "King Richard II"),
c('1399-09-40', 'King Henry IV'),
c('1413-03-21', 'King Henry V'),
c('1422-09-01', 'King Henry VI'),
c('1461-03-04', 'King Edward IV'),
c('1483-04-09', 'King Edward V'),
c('1483-06-26', 'King Richard III'),
c('1485-08-22', 'House of Tudor'),
c('1603-03-24', 'King James I'),
c('1625-03-27', 'King Charles I'),
c('1649-02-14', 'Lord Protector Oliver Cromwell'),
c('1658-09-03', 'Lord Protector Richard Cromwell'),
c('1660-05-29', 'King Charles II'),
c('1685-02-06', 'King James II'),
c('1689-01-01', 'William and Mary'),
c('1702-03-01', 'Queene Ann'),
c('1714-08-01', 'King George I'),
c('1722-06-22', 'King George II'),
c('1760-10-25', 'King George III'),
c('1820-01-29', 'King George IV'),
c('1830-06-29', 'King William IV'),
c('1837-06-20', 'Queen Victoria'),
c('1901-01-22', 'King Edward VII'),
c('1910-05-06', 'King George V'),
c('1936-01-20', 'King Edward VIII'),
c('1936-12-11', 'King George VI'),
c('1952-02-06', 'Queen Elizabeth II'),
c('1997-05-02', 'PM Tony Blair'),
c('2007-06-27', 'PM Gordon Brown'),
c('2010-05-11', 'PM David Cameron'),
c('2016-07-13', 'PM Theresa May'),
c('2019-07-22', 'PM Boris Johnson'),
c('2022-09-06', 'PM Liz Truss')
)Let’s get the sources that the Maddison Project says we should cite if we want to publish a plot like this:
(GBRsources <- MaddisonData::getMaddisonSources('GBR'))
# the print method for a tibble does not print all;
# convert to a data.frame:
as.data.frame(GBRsources)Before we publish a plot like this we want to annotate it with major events, especially transitions in head of state …
Acemoglu and Robinson (2012) Why Nations Fail (Crown)
Broadberry, S.N., B. Campbell, A. Klein, M. Overton and B. van Leeuwen (2015), British Economic Growth 1270-1870 (Cambridge: Cambridge University Press) for England 1252-1700 and for Great Britain 1700-1870.
Conference Board: Total Economy Database (TED) for GDP
pc since 2008 and population since 1990.
Scheidel, W. and Friesen, S. J., ‘The size of the economy and the distribution of income in the Roman Empire’, Journal of Roman Studies, 99 (2009, pp. 61–91) for the population at year 1.