
Package ‘MOSAlloc’
February 14, 2026

Title Constraint Multiobjective Sample Allocation

Version 1.2.5

Description Provides a framework for multipurpose optimal resource allocation in survey sampling,
extending the classical optimal allocation principles introduced by Tschuprow (1923) and
Neyman (1934) to multidomain and multivariate allocation problems. The primary method
mosalloc() allows for the consideration of precision and cost constraints at the subpopulation
level while minimizing either a vector of sampling errors or survey costs across a broad range
of optimal sample allocation problems. The approach supports both single- and multistage
designs. For single-stage stratified random sampling, the mosallocSTRS() function offers a user-
friendly interface. Sensitivity analysis is supported through the problem's dual variables, which
are naturally obtained via the internal use of the Embedded Conic Solver from the 'ECOSolveR'
package. See Willems (2025, <doi:10.25353/ubtr-9200-484c-5c89>) for a detailed description
of the theory behind 'MOSAlloc'.

License GPL (>= 3)

URL https://gitlab.com/willemsf/mosalloc

BugReports https://gitlab.com/willemsf/mosalloc/-/issues

Encoding UTF-8

RoxygenNote 7.3.3

Imports ECOSolveR, Matrix

Suggests parallel, testthat (>= 3.0.0)

NeedsCompilation no

Maintainer Felix Willems <mail.willemsf+MOSAlloc@gmail.com>

Config/testthat/edition 3

Author Felix Willems [aut, cre] (ORCID:
<https://orcid.org/0009-0005-2987-5825>),

Ralf Münnich [ths] (ORCID: <https://orcid.org/0000-0001-8285-5667>)

Repository CRAN

Date/Publication 2026-02-14 14:40:41 UTC

1

https://doi.org/10.25353/ubtr-9200-484c-5c89
https://gitlab.com/willemsf/mosalloc
https://gitlab.com/willemsf/mosalloc/-/issues
https://orcid.org/0009-0005-2987-5825
https://orcid.org/0000-0001-8285-5667

2 constructArestrSTRS

Contents
constructArestrSTRS . 2
constructCrestrSTRS . 4
constructDobjCostSTRS . 6
constructDobjPrecisionSTRS . 8
mosalloc . 10
mosallocStepwiseFirst . 22
mosallocSTRS . 26
print.summary.mosaSTRS . 33
summary.mosaSTRS . 34

Index 35

constructArestrSTRS Constructor for precision constraints

Description

A helper function for generating precision matrix A and corresponding right-hand side a under
stratified random sampling (STRS) as input to the multiobjective allocation function mosalloc().

Usage

constructArestrSTRS(X_var, X_tot, N, list, fpc = TRUE)

Arguments

X_var (type: matrix) A matrix containing stratum- (rows) and variable- (columns)
specific precision units.

X_tot (type: matrix) A matrix containing stratum- (rows) and variable- (columns)
specific totals.

N (type: vector) A vector of stratum sizes.

list (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments. Elements are lists containing the following components which in turn
correspond to one specific precision restriction:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current restriction. The indices must coincide with the corre-
sponding row numbers of X_var and X_tot.
..$variate (type: character or numeric) The column name or column index
of X_var to be addressed.
..$measure (type: character) "RSE" (relative standard error) or "VAR" (vari-
ance).
..$bound (type: numeric) An upper bound to "RSE" (or "VAR").
..$name (type: character) The name of the subpopulation (domain/area).

fpc (type: logical) A TRUE or FALSE statement indicating whether the finite popu-
lation correction should be considered.

constructArestrSTRS 3

Value

The function constructArestrSTRS() returns a list containing

A (type: matrix) a precision matrix for the quality restrictions and

a (type: vector) a precision vector for the corresponding right-hand side
usable as input to the multiobjective allocation function mosalloc().

Examples

Artificial population of 50 568 business establishments and 5 business
sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
Practical tools for designing and weighting survey samples. Springer.
https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)

See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
file: Code 5.3 constrOptim.example.R

Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes

Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue

Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees

Proportion of establishments claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)

Proportion of establishments with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)

Matrix containing stratum-specific variance components
X_var <- cbind(Sh.rev**2,

Sh.emp**2,
ph.rsch * (1 - ph.rsch) * Nh/(Nh - 1),
ph.offsh * (1 - ph.offsh) * Nh/(Nh - 1))

colnames(X_var) <- c("rev", "emp", "rsch", "offsh")

Matrix containing stratum-specific totals
X_tot <- cbind(mh.rev, mh.emp, ph.rsch, ph.offsh) * Nh
colnames(X_tot) <- c("rev", "emp", "rsch", "offsh")

Examples
#--
Example 1: Assume we require at maximum 5 % relative standard error (RSE)
for estimates of the proportion of businesses with offshore affiliates.
#
The input \code{A} and \code{a} to \code{mosalloc} can be calculated as
follows:
A <- matrix(ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2,

4 constructCrestrSTRS

nrow = 1)
a <- sum(ph.offsh * (1 - ph.offsh) * Nh**2/(Nh - 1)
)/sum(Nh * ph.offsh)**2 + 0.05**2

Using \code{constructArestrSTRS()} this can also be done via
list <- list(list(stratum_id = 1:5, variate = "offsh", measure = "RSE",

bound = 0.05, name = "pop"))
Ac <- constructArestrSTRS(X_var, X_tot, Nh, list, fpc = TRUE)

or equivalently by
list <- list(list(stratum_id = 1:5, variate = 4, measure = "RSE",

bound = 0.05, name = "pop"))
Ac <- constructArestrSTRS(X_var, X_tot, Nh, list, fpc = TRUE)

Evaluation of the output
Ac$A - A
Ac$a - a

Example 2: Assume we require at maximum 5 % relative standard error for
estimates of the proportion of businesses with offshore affiliates and
for estimates of the proportion of businesses claiming research credit
separately for strata 1:2 and 3:5 each.

list <- list(list(stratum_id = 1:2, variate = "offsh", measure = "RSE",
bound = 0.05, name = "D1"),

list(stratum_id = 3:5, variate = "offsh", measure = "RSE",
bound = 0.05, name = "D2"),

list(stratum_id = 1:2, variate = "rsch", measure = "RSE",
bound = 0.05, name = "D1"),

list(stratum_id = 3:5, variate = "rsch", measure = "RSE",
bound = 0.05, name = "D2"))

Ac <- constructArestrSTRS(X_var, X_tot, Nh, list, fpc = TRUE)

constructCrestrSTRS Constructor for cost constraints

Description

A helper function for generating cost coefficient matrix C and corresponding right-hand side c
under stratified random sampling (STRS) as input to the the multiobjective allocation function
mosalloc().

Usage

constructCrestrSTRS(H, list)

constructCrestrSTRS 5

Arguments

H (type: numeric) The number of strata.

list (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments. Elements are lists containing the following components which corre-
spond to one specific cost restriction:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current restriction. The indices must coincide with the row
numbers of X_var and X_tot.
..$c_coef (type: numeric) A vector of length length(stratum_id) contain-
ing the stratum-specific cost components for the set of strata that is going to be
bounded by above and/or below.
..$c_upper (type: numeric) The cost upper bound value. NULL if not present.
..$c_lower (type: numeric) The cost lower bound value. NULL if not present.
..$name (type: character) The name of the subpopulation (domain/area).

Value

The function constructCrestrSTRS() returns a list

C (type: matrix): a cost matrix for the cost restrictions and

c (type: vector): a cost vector for the corresponding right-hand side
usable as input to the multiobjective allocation function mosalloc().

Examples

Artificial population of 50 568 business establishments and 5 business
sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
Practical tools for designing and weighting survey samples. Springer.
https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)

See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
file: Code 5.3 constrOptim.example.R

Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
H <- length(Nh)
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying
budget <- 300000

Examples
#--
Example 1: Assume we want so specify one overall cost constraint for the
five strata. The cost of surveying must not exceed 300000 $.

The input \code{C} and \code{C} to \code{mosalloc} can be specified as
follows:

C <- matrix(ch, nrow = 1)
c <- as.vector(budget)

Using \code{constructCrestrSTRS} this can also be done via
list <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,

6 constructDobjCostSTRS

c_upper = budget, name = "Overall"))
Cc <- constructCrestrSTRS(H, list)

Evaluation of the output
Cc$C - C
Cc$c - c

Example 2: In addition to the overall cost constraint from Example 1,
we want to specify a minimum sample size for strata 1 to 3.

The input \code{C} and \code{C} to \code{mosalloc} can be specified as
follows:

C <- rbind(ch,
ch * c(-1, -1, -1, 0, 0))

c <- c(budget, # Maximum overall survey budget
- 0.5 * budget) # Minimum overall budget for strata 1-3

Using \code{constructCrestrSTRS} this can also be done via
list <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,

c_upper = budget, name = "Overall"),
list(stratum_id = 1:3, c_coef = ch[1:3], c_lower = 0.5 * budget,

c_upper = NULL, name = "1to3"))
Cc <- constructCrestrSTRS(H, list)

Evaluation of the output
Cc$C - C
Cc$c - c

constructDobjCostSTRS Constructor for cost objective components

Description

A helper function for generating cost matrix D and fixed cost vector d under stratified random
sampling (STRS) as input to the multiobjective allocation function mosalloc().

Usage

constructDobjCostSTRS(X_cost, X_fixed, list)

Arguments

X_cost (type: matrix) A matrix containing stratum- (rows) and type- (columns) specific
cost coefficients associated with fixed cost. Types of cost might be, e.g. ’$ US’,
’minutes’, ’sample size’, etc.

X_fixed (type: matrix) A matrix containing stratum- (rows) and type- (columns) specific
cost coefficients associated with fixed cost.

constructDobjCostSTRS 7

list (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments. Elements are lists containing the following components corresponding
to one specific cost type:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current objective. The indices must coincide with the row
numbers of X_cost.
..$c_type (type: character or numeric) The column name or column index
of X_cost to be addressed.
..$name (type: character) The name of the subpopulation (domain/area).

Value

The function constructDobjCostSTRS() returns a list containing

$D (type: matrix): the cost coefficient matrix for cost objectives and

$d (type: vector): the vector of fixed costs
usable as input to the multiobjective allocation function mosalloc().

Examples

Assume we are given two regions stratified into three strata each. We now
might balance the cost of surveying between both regions.

Stratum-specific variable cost
ch <- c(25, 40, 33, 18, 53, 21)
names(ch) <- c("R1_S1", "R1_S2", "R1_S3",

"R2_S1", "R2_S2", "R2_S3")

Stratum-specific fixed cost
cf <- c(55, 50, 55, 50, 55, 50)
names(cf) <- c("R1_S1", "R1_S2", "R1_S3",

"R2_S1", "R2_S2", "R2_S3")

The input \code{D} and \code{d} to \code{mosalloc()} can be specified as
follows:

D <- matrix(c(ch[1:3], rep(0, 6), ch[4:6]), 2, 6, byrow = TRUE)
d <- as.vector(c(sum(cf[1:3]), sum(cf[4:6])))

Using \code{constructDobjCostSTRS()} this can also be done via

X_cost <- matrix(ch, ncol = 1)
colnames(X_cost) <- "$ US"

X_fixed <- matrix(cf, ncol = 1)
colnames(X_fixed) <- "$ US"

list <- list(list(stratum_id = 1:3, c_type = "$ US", name = "R1"),
list(stratum_id = 4:6, c_type = "$ US", name = "R2"))

Dc <- constructDobjCostSTRS(X_cost, X_fixed, list)

Evaluation of the output

8 constructDobjPrecisionSTRS

Dc$D - D
Dc$d - d

constructDobjPrecisionSTRS

Constructor for precision objective components

Description

A helper function for generating precision matrix D and finite population correction d under stratified
random sampling (STRS) as input to the multiobjective allocation function mosalloc().

Usage

constructDobjPrecisionSTRS(X_var, X_tot, N, list, fpc = TRUE)

Arguments

X_var (type: matrix) A matrix containing stratum- (rows) and variable- (columns)
specific precision units.

X_tot (type: matrix) A matrix containing stratum- (rows) and variable- (columns)
specific totals.

N (type: vector) A vector of stratum sizes.

list (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments. Elements are lists containing the following components which in turn
correspond to one specific precision restriction:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current objective component. The indices must coincide with
the corresponding row numbers of X_var and X_tot.
..$variate (type: character or numeric) The column name or column index
of X_var to be addressed.
..$measure (type: character or numeric) As character "relVAR" (relative
variance) or "VAR" (variance). A numerical between 0 and 1 indicates a gra-
dation coefficient that balances between "relVar" (..$measure = 0) and "VAR"
(..$measure = 1).
..$name (type: character) The name of the subpopulation (domain/area).

fpc (type: logical) A TRUE or FALSE statement indicating whether the finite popu-
lation correction should be considered.

Value

The function constructDobjPrecisionSTRS() returns a list containing

$D (type: matrix): the precision matrix for quality objectives and

$d (type: vector): the vector of finite population corrections
usable as input to the multiobjective allocation function mosalloc().

constructDobjPrecisionSTRS 9

Examples

Artificial population of 50 568 business establishments and 5 business
sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
Practical tools for designing and weighting survey samples. Springer.
https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)

See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
file: Code 5.3 constrOptim.example.R

Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes

Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue

Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees

Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)

Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)

budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size

Matrix containing stratum-specific variance components
X_var <- cbind(Sh.rev**2,

Sh.emp**2,
ph.rsch * (1 - ph.rsch) * Nh/(Nh - 1),
ph.offsh * (1 - ph.offsh) * Nh/(Nh - 1))

colnames(X_var) <- c("rev", "emp", "rsch", "offsh")

Matrix containing stratum-specific totals
X_tot <- cbind(mh.rev, mh.emp, ph.rsch, ph.offsh) * Nh
colnames(X_tot) <- c("rev", "emp", "rsch", "offsh")

Examples
#--
Example 1: Assume we want to minimize the variation of estimates for
revenue.
#
The input \code{D} and \code{d} to \code{mosalloc()} can be calculated as
follows:

D <- matrix(Sh.rev**2 * Nh**2, nrow = 1) # objective variance components
d <- sum(Sh.rev**2 * Nh) # finite population correction

Using \code{constructDobjPrecisionSTRS()} this can also be done via
list <- list(list(stratum_id = 1:5, variate = "rev", measure = "VAR",

10 mosalloc

name = "pop"))
Dc <- constructDobjPrecisionSTRS(X_var, X_tot, Nh, list, fpc = TRUE)

or equivalently by
list <- list(list(stratum_id = 1:5, variate = 1, measure = "VAR",

name = "pop"))
Dc <- constructDobjPrecisionSTRS(X_var, X_tot, Nh, list, fpc = TRUE)

Evaluate output
Dc$D - D
Dc$d - d

Example 2: Minimization of the maximum coefficient of variation of
estimates for the total revenue, the number of employee, the number of
businesses claimed research credit, and the number of businesses with
offshore affiliates

The input \code{D} and \code{d} to \code{mosalloc()} can be calculated as
follows:

D <- rbind(Sh.rev**2 * Nh**2 / sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2 / sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh)) # finite population correction

Using \code{constructDobjPrecisionSTRS()} this can also be done via
list <- list(list(stratum_id = 1:5, variate = "rev", measure = "relVAR",

name = "pop"),
list(stratum_id = 1:5, variate = "emp", measure = "relVAR",

name = "pop"),
list(stratum_id = 1:5, variate = "rsch", measure = "relVAR",

name = "pop"),
list(stratum_id = 1:5, variate = "offsh", measure = "relVAR",

name = "pop"))
Dc <- constructDobjPrecisionSTRS(X_var, X_tot, Nh, list, fpc = TRUE)

Evaluation of the output
Dc$D - D
Dc$d - d

mosalloc Multiobjective sample allocation for constraint multivariate and mul-
tidomain optimal allocation in survey sampling

Description

Computes solutions to standard sample allocation problems under various precision and cost re-
strictions. The input data is transformed and parsed to the Embedded COnic Solver (ECOS) from

mosalloc 11

the ’ECOSolveR’ package. Multiple survey purposes can be optimized simultaneously through
a weighted Chebyshev minimization. Note that in the case of multiple objectives, mosalloc()
does not necessarily lead to Pareto optimality. This highly depends on the problem structure. A
strong indicator for Pareto optimality is when the weighted objective values given by Dbounds are
constant over all objective components or when all components of Qbounds equal 1. In addition,
mosalloc() can handle twice-differential convex decision functionals (in which case Pareto opti-
mality is ensured). mosalloc() returns dual variables, enabling a detailed sensitivity analysis.

Usage

mosalloc(
D,
d,
A = NULL,
a = NULL,
C = NULL,
c = NULL,
l = 2,
u = NULL,
opts = list(sense = "max_precision", f = NULL, df = NULL, Hf = NULL, init_w = 1,

mc_cores = 1L, pm_tol = 1e-05, max_iters = 100L, print_pm = FALSE)
)

Arguments

D (type: matrix) The objective matrix. A matrix of either precision or cost units.

d (type: vector) The objective vector. A vector of either fixed precision compo-
nents (e.g. finite population corrections) or fixed costs.

A (type: matrix) A matrix of precision units for precision constraints.

a (type: vector) The right-hand side vector of the precision constraints.

C (type: matrix) A matrix of cost coefficients for cost constraints

c (type: vector) The right-hand side vector of the cost constraints.

l (type: vector) A vector of lower box constraints.

u (type: vector) A vector of upper box constraints.

opts (type: list) The options used by the algorithms:
$sense (type: character) Sense of optimization (default = "max_precision",
alternative "min_cost").
$f (type: function) Decision functional over the objective vector (default =
NULL).
$df (type: function) The gradient of f (default = NULL).
$Hf (type: function) The Hesse matrix of f (default = NULL).
$init_w (type: numeric or matrix) Preference weightings (default = 1; The
weight for first objective component must be 1).
$mc_cores (type: integer) The number of cores for parallelizing multiple in-
put weightings stacked rowwise (default = 1L).
$pm_tol (type: numeric) The tolerance for the projection method (default =

12 mosalloc

1e-5).
max_iters (type: integer) The maximum number of iterations (default = 100L).
$print_pm (type: logical) A TRUE or FALSE statement whether iterations of the
projection method should be printed (default = FALSE).

Value

mosalloc() returns a list containing the following components:

$w The initial preference weighting opts$init_w.

$n The vector of optimal sample sizes.

$J The optimal objective vector.

$Objective The objective value with respect to decision functional f. NULL if opts$f = NULL.

$Utopian The component-wise univariate optimal objective vector. NULL if opts$f = NULL.

$Normal The vector normal to the Pareto frontier at $J.

$dfJ The gradient of opts$f evaluated at $J.

$Sensitivity The dual variables of the objectives and constraints.

$Qbounds The Quality bounds of the Lorentz cones.

$Dbounds The weighted objective constraints ($w * $J).

$Scalepar An internal scaling parameter.

$Ecosolver A list of ECOSolveR returns including:
...$Ecoinfostring The info string of ECOSolveR::ECOS_csolve().
...$Ecoredcodes The redcodes of ECOSolveR::ECOS_csolve().
...$Ecosummary Problem summary of ECOSolveR::ECOS_csolve().

$Timing Run time info.

$Iteration A list of internal iterates. NULL if opts$f = NULL.

Note

Precision optimization (opts$sense == "max_precision", opts$f == NULL)

The mathematical problem solved is

min
n,z,t

{t : Dz − d ≤ w−1t, Az ≤ a,Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

with 1 ≤ l ≤ u ≤ N , where

• n, z ∈ Rm and t ∈ R are the optimization variables,

• D ∈ {M ∈ RkD×m :
∑

i Mij > 0 ∀j,
∑

j Mij > 0 ∀i} a matrix of nonnegative objective
precision components with kD the number of precision objectives (the number of variables of
interest),

• d ∈ RkD the objective right hand-side (RHS), e.g. the finite population correction (fpc),

• A ∈ RkA×m a nonnegative precision matrix with kA the number of precision constraints,
a ∈ RkA the corresponding RHS, e.g. fpc + (upper bound to the coefficient of variation)^2,

• C ∈ RkC×m a cost matrix with kC the number of cost constraint,

mosalloc 13

• c ∈ RkC the corresponding RHS,

• l, u ∈ Rm the bounds to the sample size vector n,

• N ∈ Nm the vector of population sizes, and

• w a given strictly positive preference weighting.

Special cases of this formulation are

• Neyman-Tschuprow allocation (Neyman, 1934 and Tschuprow, 1923):

min
n

{ H∑
h=1

(N2
hS

2
h

nh
−NhS

2
h

)
:

H∑
h=1

nh ≤ c
}

⇔ min
n,z,t

{t : Dz−d ≤ t, Cn ≤ c, 1 ≤ nizi ∀i}

with D = (N2
1S

2
1 , . . . , N

2
HS2

H), d =
∑H

h=1 NhS
2
h, C = (1, . . . , 1) and c a maximum sample

size. Here, H is the number of strata, Nh the size of stratum h and S2
h the variance of the

variable of interest in stratum h.

• box-constrained optimal allocation:

min
n,z,t

{t : Dz − d ≤ t, Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

with D = (N2
1S

2
1 , . . . , N

2
HS2

H), d =
∑H

h=1 NhS
2
h, C = (1, . . . , 1) and c a maximum sample

size (cf. Srikantan, 1963 and Münnich et al., 2012). Here, l and u are bounds to the optimal
sample size vector.

• cost and precision constrained univariate optimal allocation:

min
n,z,t

{t : Dz − d ≤ t, Az ≤ a,Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

with kD = 1 (cf. Willems, 2025, Chapter 3).

• multivariate optimal allocation with weighted sum scalarization:

min
n,z,t

{t : w⊤Dz − w⊤d ≤ t, Az ≤ a,Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

where w ∈ RkD is a strictly positive preference weighting (cf. Folks and Antle, 1965, and
Rupp, 2018). Note that for this case the problem reduces to cost and precision constrained
univariate optimal allocation. Solutions are ensured to be optimal in the Pareto sense.

• box-constraint two-stage cluster sampling:

min
nI,nII

{(N2
I S

2
I

nI
−NIS

2
I

)
+
NI

nI

NI∑
j=1

(N2
IIjS

2
IIj

nIIj
−NIIjS

2
IIj

)
: cInI+

nI

NI

NI∑
j=1

cIIjnIIj ≤ cmax,

lI ≤ nI ≤ uI, lII ≤ nII ≤ uII

}
⇔ min

n,z,t
{t : Dz − d ≤ t, Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

with D = (N2
I S

2
I − NI

∑NI
j=1 NIIjS

2
IIj , NIN

2
II1S

2
II1, . . . , NIN

2
IINI

S2
IINI

), d = NIS
2
I , C =

[C1, C2], where C1 = (cI, l
⊤
II ,−u⊤

II)
⊤ and C2 = [N−1

I c⊤II ;−I; I] (I is the identity matrix),
c = (cmax, 0, . . . , 0)

⊤, where l = (lI, lIl
⊤
II)

⊤ and u = (uI, uIu
⊤
II)

⊤ (cf. Willems, 2025,

14 mosalloc

Chapter 3). Here, NI is the number of clusters, NIIj the size of cluster j, S2
I the between

cluster variance and S2
IIj the within cluster variances of the variable of interest. Furthermore,

cmax is a maximum expected cost, cI a variable cost for sampling one cluster, and cIIj a variable
cost for sampling one unit in cluster j. The optimal number of clusters to be drawn and the
optimal sample sizes are given through n = (nI, nInII1, . . . , nInIINI)

⊤.

For the special cases above, solutions are unique and, thus, Pareto optimal. For the general multi-
objective problem formulation this is not the case. However, a strong indicator for uniqueness of
solutions is nizi = 1∀i (Qbounds) or Dz − d = w−1t (Dbounds). Uniqueness can be ensured via
a stepwise procedure implemented in mosallocStepwiseFirst().

Precision optimization (opts$sense == "max_precision", opts$f ==f , opts$f == ∇f , opts$f
== Hf)

The mathematical problem solved is

min
n,z

{f(Dz − d) : Az ≤ a,Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

with components as specified above and where f : RkD → R, x 7→ f(x) is a twice-differentiable
convex decision functional. E.g. a p-norm f(x) = ∥x∥p with p ∈ N.

Cost optimization (opts$sense == "min_cost")

The mathematical problem solved is

min
n,z,t

{t : Dn− d ≤ 1t, Az ≤ a,Cn ≤ c, 1 ≤ nizi ∀i, l ≤ n ≤ u}

with 1 ≤ l ≤ u ≤ N . Hence, the only difference to precision optimization is the type of objective
constraint Dn− d ≤ 1t.
Special cases of this formulation are

• the cost optimal allocation (possibly multivariate, i.e. kA ≥ 2):

min
n,z,t

{t : Dn− d ≤ 1t, Az ≤ a, 1 ≤ nizi ∀i}

where D⊤ is a vector of stratum-specific sampling cost and d some fixed cost.

References

See:

Folks, J.L., Antle, C.E. (1965). Optimum Allocation of Sampling Units to Strata when there
are R Responses of Interest. Journal of the American Statistical Association, 60(309), 225-233.
doi:10.1080/01621459.1965.10480786.

Münnich, R., Sachs, E., Wagner, M. (2012). Numerical solution of optimal allocation problems
in stratified sampling under box constraints. AStA Advances in Statistical Analysis, 96, 435-450.
doi:10.1007/s101820110176z.

Neyman, J. (1934). On the Two Different Aspects of the Representative Method: The Method of
Stratified Sampling and the Method of Purposive Selection. Journal of the Royal Statistical Society,
97(4), 558–625.

https://doi.org/10.1080/01621459.1965.10480786
https://doi.org/10.1007/s10182-011-0176-z

mosalloc 15

Tschuprow, A.A. (1923). On the Mathematical Expectation of the Moments of Frequency Distribu-
tion in the Case of Correlated Observations. Metron, 2(3,4), 461-493, 646-683.

Rupp, M. (2018). Optimization for Multivariate and Multi-domain Methods in Survey Statistics
(Doctoral dissertation). Trier University. doi:10.25353/UBTR8351543214XX.

Srikantan, K.S. (1963). A Problem in Optimum Allocation. Operations Research, 11(2), 265-274.

Willems, F. (2025). A Framework for Multiobjective and Uncertain Resource Allocation Prob-
lems in Survey Sampling based on Conic Optimization (Doctoral dissertation). Trier University.
doi:10.25353/ubtr9200484c5c89.

Examples

Artificial population of 50 568 business establishments and 5 business
sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
Practical tools for designing and weighting survey samples. Springer.
https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)

See also <https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360>
file: Code 5.3 constrOptim.example.R

Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying

Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue

Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees

Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)

Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)

budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size

Examples
#--
Example 1: Minimization of the variation of estimates for revenue subject
to cost restrictions and precision restrictions to the coefficient of
variation of estimates for the proportion of businesses with offshore
affiliates.

l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch,

ch * c(-1, -1, -1, 0, 0))
c <- c(budget, # Maximum overall survey budget

https://doi.org/10.25353/UBTR-8351-5432-14XX
https://doi.org/10.25353/ubtr-9200-484c-5c89

16 mosalloc

- 0.5 * budget) # Minimum overall budget for strata 1-3

We require at maximum 5 % relative standard error for estimates of
proportion of businesses with offshore affiliates
A <- matrix(ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2,
nrow = 1)

a <- sum(ph.offsh * (1 - ph.offsh) * Nh**2/(Nh - 1)
)/sum(Nh * ph.offsh)**2 + 0.05**2

D <- matrix(Sh.rev**2 * Nh**2, nrow = 1) # objective variance components
d <- sum(Sh.rev**2 * Nh) # finite population correction

opts <- list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

sol <- mosalloc(D = D, d = d, A = A, a = a, C = C, c = c, l = l, u = u,
opts = opts)

Check solution statement of the internal solver to verify feasibility
sol$Ecosolver$Ecoinfostring # [1] "Optimal solution found"

Check constraints
c(C[1,] %*% sol$n) # [1] 3e+05
c(C[2,] %*% sol$n) # [1] -150000
c(sqrt(A %*% (1 / sol$n) - A %*% (1 / Nh))) # 5 % rel. std. err.

#--
Example 2: Minimization of the maximum relative variation of estimates for
the total revenue, the number of employee, the number of businesses claimed
research credit, and the number of businesses with offshore affiliates
subject to cost restrictions

l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint

Precision components (Variance / Totals^2) for multidimensional objective
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,

Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh)) # finite population correction

opts <- list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = 1,

mosalloc 17

mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

Obtain optimal objective value
sol$J # [1] 0.0017058896 0.0004396972 0.0006428475 0.0017058896

Obtain corresponding normal vector
sol$Normal # [1] 6.983113e-01 1.337310e-11 1.596167e-11 3.016887e-01

=> Revenue and offshore affiliates are dominating the solution with a
ratio of approximately 2:1 (sol$Normal[1] / sol$Normal[4])

#--
Example 3: Example 2 with preference weighting

w <- c(1, 3.85, 3.8, 1.3) # preference weighting
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint

D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh))

opts <- list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

#--
Example 4: Example 2 with multiple preference weightings for simultaneous
evaluation

w <- matrix(c(1.0, 1.0, 1.0, 1.0, # matrix of preference weightings
1.0, 3.9, 3.9, 1.3,
0.8, 4.2, 4.8, 1.5,
1.2, 3.5, 4.8, 2.0,
2.0, 1.0, 1.0, 2.0), 5, 4, byrow = TRUE)

w <- w / w[,1] # rescale w (ensure the first weighting to be one)
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))

18 mosalloc

c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint

D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh))

opts <- list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

sols <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
lapply(sols, function(sol){sol$Qbounds})

#--
Example 5: Example 2 where a weighted sum scalarization of the objective
components is minimized

l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- matrix(ch, nrow = 1)
c <- budget
A <- NULL # no precision constraint
a <- NULL # no precision constraint

Objective variance components
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,

Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh)) # finite population correction

Simple weighted sum as decision functional
wss <- c(1, 1, 0.5, 0.5) # preference weighting (weighted sum scalarization)

Dw <- wss %*% D
dw <- as.vector(Dw %*% (1 / Nh))

opts <- list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = FALSE)

Solve weighted sum scalarization (WSS) via mosalloc
sol_wss <- mosalloc(D = Dw, d = dw, C = C, c = c, l = l, u = u, opts = opts)

mosalloc 19

Obtain optimal objective values
J <- D %*% (1 / sol_wss$n) - d

Reconstruct solution via a weighted Chebyshev minimization
wcm <- J[1] / J
opts = list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
init_w = matrix(wcm, 1),
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = FALSE)

sol_wcm <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

Compare solutions
rbind(t(J), sol_wcm$J)
[,1] [,2] [,3] [,4]
[1,] 0.00155645 0.0004037429 0.0005934474 0.001327165
[2,] 0.00155645 0.0004037429 0.0005934474 0.001327165

rbind(sol_wssn, sol_wcmn)
[,1] [,2] [,3] [,4] [,5]
[1,] 582.8247 236.6479 116.7866 839.5988 841.4825
[2,] 582.8226 236.6475 116.7871 839.5989 841.4841

rbind(wss, sol_wcm$Normal / sol_wcm$Normal[1])
[,1] [,2] [,3] [,4]
#wss 1 1.0000000 0.5000000 0.5000000
1 0.9976722 0.4997552 0.4997462

#--
Example 6: Example 1 with two subpopulations and a p-norm as decision
functional

l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)

At maximum 5 % relative standard error for estimates of proportion of
businesses with offshore affiliates
A <- matrix(ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2,
nrow = 1)

a <- sum(ph.offsh * (1 - ph.offsh) * Nh**2/(Nh - 1)
)/sum(Nh * ph.offsh)**2 + 0.05**2

D <- rbind((Sh.rev**2 * Nh**2)*c(0,0,1,1,0),
(Sh.rev**2 * Nh**2)*c(1,1,0,0,1))# objective variance components

d <- as.vector(D %*% (1 / Nh)) # finite population correction

p-norm solution
p <- 5 # p-norm
opts <- list(sense = "max_precision",

20 mosalloc

f = function(x) sum(x**p),
df = function(x) p * x**(p - 1),
Hf = function(x) diag(p * (p - 1) * x**(p - 2)),
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = TRUE)

sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

c(sol$Normal/sol$dfJ)/mean(c(sol$Normal/sol$dfJ))
[1] 0.9999972 1.0000028

#--
Example 7: Example 2 with p-norm as decision functional and only one
overall cost constraint

l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- matrix(ch, nrow = 1)
c <- budget
A <- NULL # no precision constraint
a <- NULL # no precision constraint

Objective precision components
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,

Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh)) # finite population correction

p-norm solution
p <- 5 # p-norm
opts <- list(sense = "max_precision",

f = function(x) sum(x**p),
df = function(x) p * x**(p - 1),
Hf = function(x) diag(p * (p - 1) * x**(p - 2)),
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = TRUE)

sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

c(sol$Normal/sol$dfJ)/mean(c(sol$Normal/sol$dfJ))
[1] 1.0014362 0.9780042 1.0197807 1.0007789

#--
Example 8: Minimization of sample sizes subject to precision constraints

l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum

We require at maximum 4.66 % relative standard error for the estimate of

mosalloc 21

total revenuee, 5 % for the number of employees, 3 % for the proportion of
businesses claiming research credit, and 3 % for the proportion of
businesses with offshore affiliates
A <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,

Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

a <- as.vector(A%*%(1 / Nh) + c(0.0466, 0.05, 0.03, 0.03)**2)

We do not consider any additional sample size or cost constraints
C <- NULL # no cost constraint
c <- NULL # no cost constraint

Since we minimize the sample size, we define D and d as follows:
D <- matrix(1, nrow = 1, ncol = length(Nh)) # objective cost components
d <- as.vector(0) # vector of possible fixed cost

opts <- list(sense = "min_cost", # Sense of optimization is survey cost
f = NULL,
df = NULL,
Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = TRUE)

sol <- mosalloc(D = D, d = d, A = A, a = a, l = l, u = u, opts = opts)

sum(sol$n) # [1] 2843.219
sol$J # [1] 2843.219

#--
#--
Note: Sample size optimization for two-stage cluster sampling can be
reduced to the structure of optimal stratified random samplin when
considering expected costs. Therefore, mosalloc() can handle such
designs. A benefit is that mosalloc() allows relatively complex
sample size restrictions such as box constraints for subsampling.
Optimal sample sizes at secondary stages have to be reconstructed
from sol$n.
#
Example 9: Optimal number of primary sampling units (PSU) and secondary
sampling units (SSU) in 2-stage cluster sampling.

set.seed(1234)
pop <- data.frame(value = rnorm(100, 100, 35),

cluster = sample(1:4, 100, replace = TRUE))

CI <- 36 # Sampling cost per PSU
CII <- 10 # Average sampling cost per SSU

NI <- 4 # Number of PSUs
NII <- table(pop$cluster) # PSU/cluster sizes

22 mosallocStepwiseFirst

S2I <- var(by(pop$value, pop$cluster, sum)) # between PSU variance
S2II <- by(pop$value, pop$cluster, var) # within PSU variances

D <- matrix(c(NI**2 * S2I - NI * sum(NII * S2II), NI * NII**2 * S2II), 1)
d <- as.vector(NI * S2I) # = D %*% (1 / c(NI, NI * NII))

C <- cbind(c(CI, rep(2, NI), -NII),
rbind(rep(CII / NI, 4), -diag(4), diag(4)))

c <- as.vector(c(500, rep(0, 8)))

l <- c(2, rep(4, 4))
u <- c(NI, NI * NII)

opts <- list(sense = "max_precision",
f = NULL,
df = NULL,
Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = TRUE)

sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

Optimum number of clusters to be drawn
sol$n[1] # [1] 2.991551

Optimum number of elements to be drawn within clusters
sol$n[-1] / sol$n[1] # [1] 12.16454 11.60828 15.87949 12.80266

mosallocStepwiseFirst Multiobjective sample allocation for constraint multivariate and mul-
tidomain optimal allocation in survey sampling (a stepwise optimality
procedure is processed first to force Pareto optimality of the solution)

Description

Computes solutions to standard sample allocation problems under various precision and cost restric-
tions. The input data is transformed and parsed to the Embedded COnic Solver (ECOS) from the
’ECOSolveR’ package. Multiple survey purposes are optimized simultaneously through a stepwise
weighted Chebyshev minimization which forces Pareto optimality of solutions (cf. mosalloc()).

Usage

mosallocStepwiseFirst(
D,
d,
A = NULL,
a = NULL,

mosallocStepwiseFirst 23

C = NULL,
c = NULL,
l = 2,
u = NULL,
opts = list(sense = "max_precision", init_w = 1, mc_cores = 1L, max_iters = 100L)

)

Arguments

D (type: matrix) The objective matrix. A matrix of either precision or cost units.

d (type: vector) The objective vector. A vector of either fixed precision compo-
nents (e.g. finite population corrections) or fixed costs.

A (type: matrix) A matrix of precision units for precision constraints.

a (type: vector) The right-hand side vector of the precision constraints.

C (type: matrix) A matrix of cost coefficients for cost constraints

c (type: vector) The right-hand side vector of the cost constraints.

l (type: vector) A vector of lower box constraints.

u (type: vector) A vector of upper box constraints.

opts (type: list) The options used by the algorithms:
$sense (type: character) Sense of optimization (default = "max_precision",
alternative "min_cost").
$init_w (type numeric or matrix) Preference weightings (default = 1; The weight
for first objective component must be 1).
$mc_cores (type: integer) The number of cores for parallelizing multiple input
weightings stacked rowwise (default = 1L).
max_iters (type: integer) The maximum number of iterations (default = 100L).

Value

The function mosallocStepwiseFirst() returns a list containing the following components:

$w The initial preference weighting opts$init_w.

$n The vector of optimal sample sizes.

$J The optimal objective vector.

$Objective The objective value with respect to decision functional f. NULL if opts$f = NULL.

$Utopian Always NULL (consistency to mosalloc() output). NULL if opts$f = NULL.

$Normal The vector normal to the Pareto frontier at $J.

$dfJ Always NULL (consistency to mosalloc() output).

$Sensitivity The dual variables of the objectives and constraints.

$Qbounds The Quality bounds of the Lorentz cones.

$Dbounds The weighted objective constraints ($w * $J).

$Scalepar An internal scaling parameter.

$Ecosolver A list of ECOSolveR returns including:
...$Ecoinfostring The info string of ECOSolveR::ECOS_csolve().

24 mosallocStepwiseFirst

...$Ecoredcodes The redcodes of ECOSolveR::ECOS_csolve().

...$Ecosummary Problem summary of ECOSolveR::ECOS_csolve().

$Timing Run time info.

$Iteration Always NULL (consistency to mosalloc() output).

References

See:

Willems, F. (2025). A Framework for Multiobjective and Uncertain Resource Allocation Prob-
lems in Survey Sampling based on Conic Optimization (Doctoral dissertation). Trier University.
doi:10.25353/ubtr9200484c5c89.

Examples

Artificial population of 50 568 business establishments and 5 business
sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
Practical tools for designing and weighting survey samples. Springer.
https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)

See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
file: Code 5.3 constrOptim.example.R

Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying

Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue

Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees

Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)

Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)

budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size

#--
Problem: Minimization of the maximum relative variation of estimates for
the total revenue, the number of employee, the number of businesses claimed
research credit and the number of businesses with offshore affiliates
subject to cost restrictions

l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))

https://doi.org/10.25353/ubtr-9200-484c-5c89

mosallocStepwiseFirst 25

c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint

Variance components for multidimensional objective
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,

Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)

d <- as.vector(D %*% (1 / Nh)) # finite population correction

opts = list(sense = "max_precision",
init_w = 1,
mc_cores = 1L,
max_iters = 100L)

res1 <- mosallocStepwiseFirst(D = D, d = d, C = C, c = c, l = l, u = u,
opts = opts)

w <- res1$J[1] / res1$J
w # [1] 1.000000 3.879692 2.653655 1.000000

opts = list(sense = "max_precision",
init_w = w,
mc_cores = 1L,
max_iters = 100L)

res2 <- mosallocStepwiseFirst(D = D, d = d, C = C, c = c, l = l, u = u,
opts = opts)

res2$w # [1] 1.000000 3.879692 2.653655 1.000000

Compare to function mosalloc (without stepwise procedure)
opts = list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

res3 <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)

Compare objectives
rbind(res1$J, res2$J, res3$J)
[,1] [,2] [,3] [,4]
#[1,] 0.00170589 0.0004396972 0.0006428453 0.00170589
#[2,] 0.00170589 0.0004396971 0.0006428420 0.00170589
#[3,] 0.00170589 0.0004396971 0.0006428440 0.00170589

Compare optimal sample sizes
rbind(res1$n, res2$n, res3$n)
[,1] [,2] [,3] [,4] [,5]
[1,] 958.0510 290.7446 147.1789 602.8856 638.2686
[2,] 958.0455 290.7447 147.1871 602.8847 638.2692
[3,] 958.0488 290.7446 147.1822 602.8853 638.2688

26 mosallocSTRS

mosallocSTRS (Single-stage) stratified random sampling interface for functions
mosalloc() and mosallocStepwiseFirst()

Description

Interface for the functions mosalloc() and mosallocStepwiseFirst() of the same package which
allows for a user-friendly data handling in the case of single-stage stratified random sampling.

Usage

mosallocSTRS(
X_var,
X_tot,
N,
listD,
listA = NULL,
listC = NULL,
fpc = TRUE,
l = 2,
u = NULL,
opts,
ForceOptimality = FALSE,
X_cost = NULL,
X_fixed = NULL

)

Arguments

X_var (type: matrix) A matrix containing stratum- (row) and variable- (column) spe-
cific precision units (e.g. variances).

X_tot (type: matrix) A matrix containing stratum- (row) and variable- (column) spe-
cific totals.

N (type: vector) A vector of stratum sizes.

listD (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments.
If opts$sense == "max_precision", elements are lists containing the follow-
ing components which correspond to one specific precision target each:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current restriction. The indices must coincide with the row
numbers of X_var and X_tot.
..$variate (type: character or numeric) The column name or column index
of X_var to be addressed.
..$measure (type: character or numeric) A character ("relVAR" (relative
variance) or "VAR" (variance)) or a numerical value between 0 and 1 indicates a
gradation coefficient that balances between "relVar" (..$measure = 0) and "VAR"

mosallocSTRS 27

(..$measure = 1).
..$name (type: character) The name of the subpopulation (domain/area).
If opts$sense == "min_cost", elements are lists containing the following com-
ponents which correspond to one specific cost target each:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current objective. The indices must coincide with the row
numbers of X_cost.
..$c_type (type: character or numeric) The column name or column index
of X_cost to be addressed.
..$name (type: character) The name of the subpopulation (domain/area).

listA (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments. Elements are lists containing the following components which in turn
correspond to one specific precision restriction:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current restriction. The indices must coincide with the corre-
sponding row numbers of X_var and X_tot.
..$variate (type: character or numeric) The column name or column index
of X_var to be addressed.
..$measure (type: character) "RSE" (relative standard error) or "VAR" (vari-
ance).
..$bound (type: numeric) An upper bound to "RSE" (or "VAR").
..$name (type: character) The name of the subpopulation (domain/area).

listC (type: list) A list of lists taking subpopulation- (domain/area) specific argu-
ments. Elements are lists containing the following components which corre-
spond to one specific cost restriction:
..$stratum_id (type: numeric) A vector containing the indices of the strata
considered for the current restriction. The indices must coincide with the row
numbers of X_var and X_tot.
..$c_coef (type: numeric) A vector of length length(stratum_id) contain-
ing the stratum-specific cost components for the set of strata that is going to be
bounded by above and/or below.
..$c_upper (type: numeric) The cost upper bound value. NULL if not present.
..$c_lower (type: numeric) The cost lower bound value. NULL if not present.
..$name (type: character) The name of the subpopulation (domain/area).

fpc (type: logical) A TRUE or FALSE statement indicating whether the finite popu-
lation correction should be considered.

l (type: vector) A vector of lower box constraints.

u (type: vector) A vector of upper box constraints.

opts (type: list) The options used by the algorithms:
$sense (type: character) Sense of optimization (default = "max_precision",
alternative "min_cost").
$df (type: function) The gradient of f (default = NULL).
$Hf (type: function) The Hesse matrix of f (default = NULL).
$method (type: character) A character indicating scalarization method (de-
fault = "WCM", alternative "WSS"), $f must be NULL.
$f (type: function) Decision functional over the objective vector (default =
NULL). The weighted Chebyshev minimization (WCM) minimizes for weighted

28 mosallocSTRS

maximum objective component. The weighted sum scalarization (WSS) mini-
mizes for the weighted sum. For either case the weights are given by $init_w.
$init_w (type: numeric or matrix) Preference weightings (default = 1; The
weight for first objective component must be 1).
$mc_cores (type: integer) The number of cores for parallelizing multiple in-
put weightings stacked rowwise (default = 1L).
$pm_tol (type: numeric) The tolerance for the projection method (default =
1e-5).
max_iters (type: integer) The maximum number of iterations (default = 100L).
$print_pm (type: logical) A TRUE or FALSE statement whether iterations of the
projection method should be printed (default = FALSE).

ForceOptimality

(type: logical) A TRUE or FALSE statement indicating whether Pareto optimal-
ity should be ensured. Default is FALSE (for most practical problem formulations
Pareto optimality is achieved by construction, e.g. in the case of one overall
cost constraint). If TRUE, additional computation time is required. In this case,
mosallocStepwiseFirst() is used internally.

X_cost (type: matrix) A matrix containing stratum- (row) and type- (column) specific
cost coefficients associated with fixed cost. Types of cost might be, e.g. ’$ US’,
’minutes’, ’sample size’, etc. Default is NULL. The argument is required in the
case of cost minimization (opt$sense == "min_cost").

X_fixed (type: matrix) A matrix containing stratum- (rows) and type- (columns) specific
cost coefficients associated with fixed cost. Default is NULL. Used solely in the
case of cost minimization (opt$sense == "min_cost").

Value

A mosaSTRS object or a list of mosaSTRS objects. A mosaSTRS object is a list containing the follow-
ing components:

$sense Sense of optimization; max precision or min_cost.

$method The method used, either weighted sum scalarization (WSS) or weighted Chebyshev mini-
mization (WCM).

$init_w The initial preference weightings (opts$init_w).

$opt_w The optimal weightings w.r.t. opts$init_w as opts$init_w might not lead to Pareto
optimality. NULL if ForceOptimality = FALSE.

$n_opt The vector of optimal sample sizes.

$objective The objective values, including the sensitivity and the RSE.

$precision A data frame corresponding to the precision constraints.

$cost A data frame corresponding to the cost constraints.

$problem_components A list containing the input data to the optimization problem.

$output_mosalloc A list of function returns of mosalloc().

If opts$init_w has multiple rows, the function returns a list of mosaSTRS objects whose length
equals the number of rows.

mosallocSTRS 29

Examples

Artificial population of 50 568 business establishments and 5 business
sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
Practical tools for designing and weighting survey samples. Springer.
https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)

See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
file: Code 5.3 constrOptim.example.R

Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying

Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue

Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees

Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)

Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)

budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size

Matrix containing stratum-specific variance components
X_var <- cbind(Sh.rev**2,

Sh.emp**2,
ph.rsch * (1 - ph.rsch) * Nh/(Nh - 1),
ph.offsh * (1 - ph.offsh) * Nh/(Nh - 1))

colnames(X_var) <- c("rev", "emp", "rsch", "offsh")

Matrix containing stratum-specific totals
X_tot <- cbind(mh.rev, mh.emp, ph.rsch, ph.offsh) * Nh
colnames(X_tot) <- c("rev", "emp", "rsch", "offsh")

Examples
#--
Example 1: Univariate minimization of the variation of estimates for
revenue subject to cost restrictions and precision restrictions to the
relative standard error of estimates for the proportion of businesses with
offshore affiliates. Additionally, there is one overall cost constraint and
at least half of the provided budget must be spend to strata 1 to 3.

Specify objectives via listD
listD <- list(list(stratum_id = 1:5, variate = "rev", measure = "relVAR",

name = "pop"))

30 mosallocSTRS

Specify precision constraints via listA
listA <- list(list(stratum_id = 1:5, variate = "offsh", measure = "RSE",

bound = 0.05, name = "pop"))

Specify cost constraints via listC
listC <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,

c_upper = budget, name = "Overall"),
list(stratum_id = 1:3, c_coef = ch[1:3],

c_lower = 0.5 * budget, c_upper = NULL, name = "1to3"))

Specify stratum-specific box constraints
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum

Specify parameter for mosalloc (method = "WSS")
opts <- list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
method = "WSS", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

Run mosallocSTRS with weighted sum scalarization (WSS)
resWSS <- mosallocSTRS(X_var, X_tot, Nh, listD, listA, listC,

fpc = TRUE, l, u, opts)

summary(resWSS)

Specify parameter for mosalloc (method = "WCM")
opts = list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

Run mosallocSTRS with weighted Chebyshec minimization (WCM)
resWCM <- mosallocSTRS(X_var, X_tot, Nh, listD, listA, listC,

fpc = TRUE, l, u, opts)

summary(resWCM)

The optimal sample sizes vector can also be obtained by
summary(resWCM)$n_opt

Hint: For univariate allocation problems 'WSS' and 'WCM' are equivalent!

#--
Example 2: Minimization of the maximum relative variation of estimates for
the total revenue, the number of employee, the number of businesses claimed
research credit and the number of businesses with offshore affiliates
subject to one overall cost constraint and at least half of the provided
budget must be spend to strata 1 to 3.

Specify objectives via listD

mosallocSTRS 31

listD <- list(list(stratum_id = 1:5, variate = "rev", measure = "relVAR",
name = "pop"),

list(stratum_id = 1:5, variate = "emp", measure = "relVAR",
name = "pop"),

list(stratum_id = 1:5, variate = "rsch", measure = "relVAR",
name = "pop"),

list(stratum_id = 1:5, variate = "offsh", measure = "relVAR",
name = "pop"))

Specify cost constraints via listC
listC <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,

c_upper = budget, name = "Overall"),
list(stratum_id = 1:3, c_coef = ch[1:3],

c_lower = 0.5 * budget, c_upper = NULL, name = "1to3"))

Specify stratum-specific box constraints
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum

Specify parameter for mosalloc (method = "WSS")
opts = list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
method = "WSS", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

Run mosallocSTRS with weighted sum scalarization (WSS)
resWSS <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC,

fpc = TRUE, l, u, opts)

summary(resWSS)

Specify parameter for mosalloc (method = "WCM")
opts = list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

Run mosallocSTRS with weighted Chebyshec minimization (WCM)
resWCM <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC,

fpc = TRUE, l, u, opts)

summary(resWCM)

Since the WCM does not necessarily lead to Pareto optimal allocations,
we might force this via a internal stepwise procedure by setting
ForceOptimality = TRUE.

resWCM_FO <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC,
fpc = TRUE, l, u, opts, ForceOptimality = TRUE)

summary(resWCM_FO)

32 mosallocSTRS

#--
Example 3: Example 2 with multiple sets of preference weightings.

Define a set of preference weightings, e.g.
w_1 <- c(1, 1, 1, 1)
w_2 <- c(1, 2, 2, 1)
w_3 <- c(1, 5, 5, 1)

Combine the weightings to a matrix stacked rowwise
w <- rbind(w_1, w_2, w_3)

Specify parameter for mosalloc() (method = "WCM"; not yet possible with WSS)
opts = list(sense = "max_precision",

f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

Run mosallocSTRS with weighted Chebyshec minimization (WCM)
res <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC, fpc = TRUE,

l, u, opts)

summary(res)

#--
Example 4: Minimization of survey cost subject to quality restrictions on
subpopulation level.

X_cost <- matrix(ch, 5, 1, dimnames = list(1:5,"cost"))

Specify cost objectives via listD
listD <- list(list(stratum_id = 1:5, c_type = "cost", name = "pop"))

Specify quailty restrictions via listD. Here: 5 % relative standard error
listA <- list(list(stratum_id = 1:2, variate = "rev", measure = "RSE",

bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "rev", measure = "RSE",

bound = 0.05, name = "S3-5"),
list(stratum_id = 1:2, variate = "emp", measure = "RSE",

bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "emp", measure = "RSE",

bound = 0.05, name = "S3-5"),
list(stratum_id = 1:2, variate = "rsch", measure = "RSE",

bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "rsch", measure = "RSE",

bound = 0.05, name = "S3-5"),
list(stratum_id = 1:2, variate = "offsh", measure = "RSE",

bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "offsh", measure = "RSE",

bound = 0.05, name = "S3-5"))

Specify cost constraints

print.summary.mosaSTRS 33

listC <- NULL

Specify stratum-specific box constraints
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum

Specify parameters for mosalloc()
opts = list(sense = "min_cost",

f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)

Run mosallocSTRS()
res <- mosallocSTRS(X_var, X_tot, Nh, listD, listA, NULL, fpc = TRUE,

l, u, opts, X_cost = X_cost)

summary(res)

Optimal sample sizes
summary(res)$n_opt

print.summary.mosaSTRS

Print a summary.mosaSTRS object

Description

Print-function for class summary.mosaSTRS.

Usage

S3 method for class 'summary.mosaSTRS'
print(x, ...)

Arguments

x an object inheriting from class summary.mosaSTRS, representing the results of
the function mosallocSTRS()

... some methods for this generic require additional arguments. None are used in
this method.

Value

Invisibly returns x.

34 summary.mosaSTRS

summary.mosaSTRS Summary a mosaSTRS object

Description

Summary-function for class mosaSTRS

Usage

S3 method for class 'mosaSTRS'
summary(object, ...)

Arguments

object an object inheriting from class mosaSTRS, representing the results of the function
mosallocSTRS(). This can also be a list of mosaSTRS objects.

... some methods for this generic require additional arguments. None are used in
this method.

Value

Either a summary.mosaSTRS object for a mosaSTRS object or a list of summary.mosaSTRS objects
for a list of mosaSTRS objects. A summary.mosaSTRS object is a list containing the following
components:

$vname Name of object.

$sense Sense of optimization; max precision or min_cost.

$method The method used weighted sum scalarization (WSS) or weighted Chebyshev minimization
(WCM).

$objout A data frame corresponding to the objectives, including the values, the sensitivity, the
weights and the RSE.

$precision A data frame corresponding to the precision constraints.

$cost A data frame corresponding to the cost constraints.

$n_opt A vector of optimal sample sizes w.r.t the weights.

Index

constructArestrSTRS, 2
constructCrestrSTRS, 4
constructDobjCostSTRS, 6
constructDobjPrecisionSTRS, 8

mosalloc, 10
mosallocStepwiseFirst, 22
mosallocSTRS, 26

print.summary.mosaSTRS, 33

summary.mosaSTRS, 34

35

	constructArestrSTRS
	constructCrestrSTRS
	constructDobjCostSTRS
	constructDobjPrecisionSTRS
	mosalloc
	mosallocStepwiseFirst
	mosallocSTRS
	print.summary.mosaSTRS
	summary.mosaSTRS
	Index

