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Boston Boston Housing Data (Regression)

Description

housing values in suburbs of Boston

Usage

data(Boston)

Format

A data frame with 506 Instances and 14 attributes (including the class attribute, "medv")

crim per capita crime rate by town

zn proportion of residential land zoned for lots over 25,000 sq.ft.

indus proportion of non-retail business acres per town

chas Charles River dummy variable (= 1 if tract bounds)

nox nitric oxides concentration (parts per 10 million)

rm average number of rooms per dwelling

age proportion of owner-occupied units built prior to 1940

dis weighted distances to five Boston employment centres

rad index of accessibility to radial highways

tax full-value property-tax rate per $10,000

ptratio pupil-teacher ratio by town

black 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

lstat percentage of lower status of the population

medv Median value of owner-occupied homes in $1000’s
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Source

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

Creator: Harrison, D. and Rubinfeld, D.L. ’Hedonic prices and the demand for clean air’, J. Environ.
Economics & Management, vol.5, 81-102, 1978.

References

https://archive.ics.uci.edu/ml/datasets/Housing

Examples

data(Boston)

X = Boston[, -ncol(Boston)]

y = Boston[, ncol(Boston)]

distMat.KernelKnn kernel k-nearest-neighbors using a distance matrix

Description

kernel k-nearest-neighbors using a distance matrix

Usage

distMat.KernelKnn(
DIST_mat,
TEST_indices = NULL,
y,
k = 5,
h = 1,
weights_function = NULL,
regression = F,
threads = 1,
extrema = F,
Levels = NULL,
minimize = T

)

Arguments

DIST_mat a distance matrix (square matrix) having a diagonal filled with either zero’s (0)
or NA’s (missing values)
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TEST_indices a numeric vector specifying the indices of the test data in the distance matrix
(row-wise or column-wise). If the parameter equals NULL then no test data is
included in the distance matrix

y a numeric vector (in classification the labels must be numeric from 1:Inf). It is
assumed that if the TEST_indices is not NULL then the length of y equals to
the rows of the train data ( nrow(DIST_mat) - length(TEST_indices) ), otherwise
length(y) == nrow(DIST_mat).

k an integer specifying the k-nearest-neighbors

h the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0)

weights_function

there are various ways of specifying the kernel function. See the details section.

regression a boolean (TRUE,FALSE) specifying if regression or classification should be
performed

threads the number of cores to be used in parallel (openmp will be employed)

extrema if TRUE then the minimum and maximum values from the k-nearest-neighbors
will be removed (can be thought as outlier removal)

Levels a numeric vector. In case of classification the unique levels of the response
variable are necessary

minimize either TRUE or FALSE. If TRUE then lower values will be considered as rele-
vant for the k-nearest search, otherwise higher values.

Details

This function takes a distance matrix (square matrix where the diagonal is filled with 0 or NA)
as input. If the TEST_indices parameter is NULL then the predictions for the train data will be
returned, whereas if the TEST_indices parameter is not NULL then the predictions for the test
data will be returned. There are three possible ways to specify the weights function, 1st option
: if the weights_function is NULL then a simple k-nearest-neighbor is performed. 2nd option
: the weights_function is one of ’uniform’, ’triangular’, ’epanechnikov’, ’biweight’, ’triweight’,
’tricube’, ’gaussian’, ’cosine’, ’logistic’, ’gaussianSimple’, ’silverman’, ’inverse’, ’exponential’.
The 2nd option can be extended by combining kernels from the existing ones (adding or multiply-
ing). For instance, I can multiply the tricube with the gaussian kernel by giving ’tricube_gaussian_MULT’
or I can add the previously mentioned kernels by giving ’tricube_gaussian_ADD’. 3rd option : a
user defined kernel function

Value

a vector (if regression is TRUE), or a data frame with class probabilities (if regression is FALSE)

Author(s)

Lampros Mouselimis
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Examples

data(Boston)

X = Boston[, -ncol(Boston)]
y = Boston[, ncol(Boston)]

dist_obj = dist(X)

dist_mat = as.matrix(dist_obj)

out = distMat.KernelKnn(dist_mat, TEST_indices = NULL, y, k = 5, regression = TRUE)

distMat.knn.index.dist

indices and distances of k-nearest-neighbors using a distance matrix

Description

indices and distances of k-nearest-neighbors using a distance matrix

Usage

distMat.knn.index.dist(
DIST_mat,
TEST_indices = NULL,
k = 5,
threads = 1,
minimize = T

)

Arguments

DIST_mat a distance matrix (square matrix) having a diagonal filled with either zero’s (0)
or NA’s (missing values)

TEST_indices a numeric vector specifying the indices of the test data in the distance matrix
(row-wise or column-wise). If the parameter equals NULL then no test data is
included in the distance matrix

k an integer specifying the k-nearest-neighbors

threads the number of cores to be used in parallel (openmp will be employed)

minimize either TRUE or FALSE. If TRUE then lower values will be considered as rele-
vant for the k-nearest search, otherwise higher values.
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Details

This function takes a number of arguments and it returns the indices and distances of the k-nearest-
neighbors for each observation. If TEST_indices is NULL then the indices-distances for the DIST_mat
be returned, whereas if TEST_indices is not NULL then the indices-distances for the test data only
will be returned.

Value

a list of length 2. The first sublist returns the indices and the second the distances of the k nearest
neighbors for each observation. If TEST_indices is NULL the number of rows of each sublist equals
the number of rows in the DIST_mat data. If TEST_indices is not NULL the number of rows of
each sublist equals the length of the input TEST_indices.

Author(s)

Lampros Mouselimis

Examples

data(Boston)

X = Boston[, -ncol(Boston)]

dist_obj = dist(X)

dist_mat = as.matrix(dist_obj)

out = distMat.knn.index.dist(dist_mat, TEST_indices = NULL, k = 5)

ionosphere Johns Hopkins University Ionosphere database (binary classification)

Description

This radar data was collected by a system in Goose Bay, Labrador. This radar data was collected
by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency
antennas with a total transmitted power on the order of 6.4 kilowatts. See the paper for more details.
The targets were free electrons in the ionosphere. "Good" radar returns are those showing evidence
of some type of structure in the ionosphere. "Bad" returns are those that do not; their signals pass
through the ionosphere. Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose
Bay system. Instances in this databse are described by 2 attributes per pulse number, corresponding
to the complex values returned by the function resulting from the complex electromagnetic signal.

Usage

data(ionosphere)
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Format

A data frame with 351 Instances and 35 attributes (including the class attribute, "class")

Details

Sigillito, V. G., Wing, S. P., Hutton, L. V., Baker, K. B. (1989). Classification of radar returns from
the ionosphere using neural networks. Johns Hopkins APL Technical Digest, 10, 262-266.

They investigated using backprop and the perceptron training algorithm on this database. Using the
first 200 instances for training, which were carefully split almost 50 percent positive and 50 percent
negative, they found that a "linear" perceptron attained 90.7 percent, a "non-linear" perceptron
attained 92 percent, and backprop an average of over 96 percent accuracy on the remaining 150
test instances, consisting of 123 "good" and only 24 "bad" instances. (There was a counting error
or some mistake somewhere; there are a total of 351 rather than 350 instances in this domain.)
Accuracy on "good" instances was much higher than for "bad" instances. Backprop was tested
with several different numbers of hidden units (in [0,15]) and incremental results were also reported
(corresponding to how well the different variants of backprop did after a periodic number of epochs).
David Aha (aha@ics.uci.edu) briefly investigated this database. He found that nearest neighbor
attains an accuracy of 92.1 percent, that Ross Quinlan’s C4 algorithm attains 94.0 percent (no
windowing), and that IB3 (Aha & Kibler, IJCAI-1989) attained 96.7 percent (parameter settings:
70 percent and 80 percent for acceptance and dropping respectively).

Source

Donor: Vince Sigillito (vgs@aplcen.apl.jhu.edu)

Date: 1989

Source: Space Physics Group

Applied Physics Laboratory

Johns Hopkins University

Johns Hopkins Road

Laurel, MD 20723

References

https://archive.ics.uci.edu/ml/datasets/Ionosphere

Examples

data(ionosphere)

X = ionosphere[, -ncol(ionosphere)]

y = ionosphere[, ncol(ionosphere)]
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KernelKnn kernel k-nearest-neighbors

Description

This function utilizes kernel k nearest neighbors to predict new observations

Usage

KernelKnn(
data,
TEST_data = NULL,
y,
k = 5,
h = 1,
method = "euclidean",
weights_function = NULL,
regression = F,
transf_categ_cols = F,
threads = 1,
extrema = F,
Levels = NULL,
p = k

)

Arguments

data a data frame or matrix

TEST_data a data frame or matrix (it can be also NULL)

y a numeric vector (in classification the labels must be numeric from 1:Inf)

k an integer specifying the k-nearest-neighbors

h the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0)

method a string specifying the method. Valid methods are ’euclidean’, ’manhattan’,
’chebyshev’, ’canberra’, ’braycurtis’, ’pearson_correlation’, ’simple_matching_coefficient’,
’minkowski’ (by default the order ’p’ of the minkowski parameter equals k),
’hamming’, ’mahalanobis’, ’jaccard_coefficient’, ’Rao_coefficient’

weights_function

there are various ways of specifying the kernel function. See the details section.

regression a boolean (TRUE,FALSE) specifying if regression or classification should be
performed

transf_categ_cols

a boolean (TRUE, FALSE) specifying if the categorical columns should be con-
verted to numeric or to dummy variables

threads the number of cores to be used in parallel (openmp will be employed)
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extrema if TRUE then the minimum and maximum values from the k-nearest-neighbors
will be removed (can be thought as outlier removal)

Levels a numeric vector. In case of classification the unique levels of the response
variable are necessary

p a numeric value specifying the ’minkowski’ order, i.e. if ’method’ is set to
’minkowski’. This parameter defaults to ’k’

Details

This function takes a number of arguments and it returns the predicted values. If TEST_data is
NULL then the predictions for the train data will be returned, whereas if TEST_data is not NULL
then the predictions for the TEST_data will be returned. There are three possible ways to specify the
weights function, 1st option : if the weights_function is NULL then a simple k-nearest-neighbor is
performed. 2nd option : the weights_function is one of ’uniform’, ’triangular’, ’epanechnikov’,
’biweight’, ’triweight’, ’tricube’, ’gaussian’, ’cosine’, ’logistic’, ’gaussianSimple’, ’silverman’,
’inverse’, ’exponential’. The 2nd option can be extended by combining kernels from the exist-
ing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian ker-
nel by giving ’tricube_gaussian_MULT’ or I can add the previously mentioned kernels by giving
’tricube_gaussian_ADD’. 3rd option : a user defined kernel function

Value

a vector (if regression is TRUE), or a data frame with class probabilities (if regression is FALSE)

Author(s)

Lampros Mouselimis

Examples

data(Boston)

X = Boston[, -ncol(Boston)]
y = Boston[, ncol(Boston)]

out = KernelKnn(X, TEST_data = NULL, y, k = 5, method = 'euclidean', regression = TRUE)

KernelKnnCV kernel-k-nearest-neighbors using cross-validation

Description

This function performs kernel k nearest neighbors regression and classification using cross valida-
tion
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Usage

KernelKnnCV(
data,
y,
k = 5,
folds = 5,
h = 1,
method = "euclidean",
weights_function = NULL,
regression = F,
transf_categ_cols = F,
threads = 1,
extrema = F,
Levels = NULL,
seed_num = 1,
p = k

)

Arguments

data a data frame or matrix

y a numeric vector (in classification the labels must be numeric from 1:Inf)

k an integer specifying the k-nearest-neighbors

folds the number of cross validation folds (must be greater than 1)

h the bandwidth (applicable if the weights_function is not NULL, defaults to 1.0)

method a string specifying the method. Valid methods are ’euclidean’, ’manhattan’,
’chebyshev’, ’canberra’, ’braycurtis’, ’pearson_correlation’, ’simple_matching_coefficient’,
’minkowski’ (by default the order ’p’ of the minkowski parameter equals k),
’hamming’, ’mahalanobis’, ’jaccard_coefficient’, ’Rao_coefficient’

weights_function

there are various ways of specifying the kernel function. See the details section.

regression a boolean (TRUE,FALSE) specifying if regression or classification should be
performed

transf_categ_cols

a boolean (TRUE, FALSE) specifying if the categorical columns should be con-
verted to numeric or to dummy variables

threads the number of cores to be used in parallel (openmp will be employed)

extrema if TRUE then the minimum and maximum values from the k-nearest-neighbors
will be removed (can be thought as outlier removal)

Levels a numeric vector. In case of classification the unique levels of the response
variable are necessary

seed_num a numeric value specifying the seed of the random number generator

p a numeric value specifying the ’minkowski’ order, i.e. if ’method’ is set to
’minkowski’. This parameter defaults to ’k’
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Details

This function takes a number of arguments (including the number of cross-validation-folds) and
it returns predicted values and indices for each fold. There are three possible ways to specify the
weights function, 1st option : if the weights_function is NULL then a simple k-nearest-neighbor is
performed. 2nd option : the weights_function is one of ’uniform’, ’triangular’, ’epanechnikov’,
’biweight’, ’triweight’, ’tricube’, ’gaussian’, ’cosine’, ’logistic’, ’gaussianSimple’, ’silverman’,
’inverse’, ’exponential’. The 2nd option can be extended by combining kernels from the exist-
ing ones (adding or multiplying). For instance, I can multiply the tricube with the gaussian ker-
nel by giving ’tricube_gaussian_MULT’ or I can add the previously mentioned kernels by giving
’tricube_gaussian_ADD’. 3rd option : a user defined kernel function

Value

a list of length 2. The first sublist is a list of predictions (the length of the list equals the number of
the folds). The second sublist is a list with the indices for each fold.

Author(s)

Lampros Mouselimis

Examples

## Not run:
data(ionosphere)

X = ionosphere[, -c(2, ncol(ionosphere))]
y = as.numeric(ionosphere[, ncol(ionosphere)])

out = KernelKnnCV(X, y, k = 5, folds = 3, regression = FALSE, Levels = unique(y))

## End(Not run)

knn.index.dist indices and distances of k-nearest-neighbors

Description

This function returns the k nearest indices and distances of each observation

Usage

knn.index.dist(
data,
TEST_data = NULL,
k = 5,
method = "euclidean",
transf_categ_cols = F,
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threads = 1,
p = k

)

Arguments

data a data.frame or matrix

TEST_data a data.frame or matrix (it can be also NULL)

k an integer specifying the k-nearest-neighbors

method a string specifying the method. Valid methods are ’euclidean’, ’manhattan’,
’chebyshev’, ’canberra’, ’braycurtis’, ’pearson_correlation’, ’simple_matching_coefficient’,
’minkowski’ (by default the order ’p’ of the minkowski parameter equals k),
’hamming’, ’mahalanobis’, ’jaccard_coefficient’, ’Rao_coefficient’

transf_categ_cols

a boolean (TRUE, FALSE) specifying if the categorical columns should be con-
verted to numeric or to dummy variables

threads the number of cores to be used in parallel (openmp will be employed)

p a numeric value specifying the ’minkowski’ order, i.e. if ’method’ is set to
’minkowski’. This parameter defaults to ’k’

Details

This function takes a number of arguments and it returns the indices and distances of the k-nearest-
neighbors for each observation. If TEST_data is NULL then the indices-distances for the train data
will be returned, whereas if TEST_data is not NULL then the indices-distances for the TEST_data
will be returned.

Value

a list of length 2. The first sublist returns the indices and the second the distances of the k nearest
neighbors for each observation. If TEST_data is NULL the number of rows of each sublist equals
the number of rows in the train data. If TEST_data is not NULL the number of rows of each sublist
equals the number of rows in the TEST data.

Author(s)

Lampros Mouselimis

Examples

data(Boston)

X = Boston[, -ncol(Boston)]

out = knn.index.dist(X, TEST_data = NULL, k = 4, method = 'euclidean', threads = 1)
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