
Package ‘Infusion’
May 3, 2023

Type Package

Title Inference Using Simulation

Description Implements functions for simulation-based inference. In particular, implements func-
tions to perform likelihood inference from data summaries whose distributions are simu-
lated. A first approach was described in Rousset et al. (2017 <doi:10.1111/1755-
0998.12627>) but the package implements more advanced methods.

Encoding UTF-8

Version 2.1.0

Date 2023-05-03

Imports spaMM (>= 4.1.66), proxy, blackbox (>= 1.1.41), mvtnorm,
methods, numDeriv, viridis, pbapply, ranger, foreach,
matrixStats

Suggests testthat, Rmixmod, crayon, caret, xLLiM

Depends R (>= 3.3.0)

Maintainer François Rousset <francois.rousset@umontpellier.fr>

License CeCILL-2

ByteCompile true

URL https://www.R-project.org,

https://gitlab.mbb.univ-montp2.fr/francois/Infusion

NeedsCompilation no

Author François Rousset [aut, cre, cph]
(<https://orcid.org/0000-0003-4670-0371>)

Repository CRAN

Date/Publication 2023-05-03 11:00:03 UTC

R topics documented:
add_reftable . 2
add_simulation . 5
check_raw_stats . 9

1

https://doi.org/10.1111/1755-0998.12627
https://doi.org/10.1111/1755-0998.12627
https://www.R-project.org
https://gitlab.mbb.univ-montp2.fr/francois/Infusion
https://orcid.org/0000-0003-4670-0371

2 add_reftable

confint.SLik . 9
densv . 10
dMixmod . 11
example_raw . 12
example_raw_proj . 13
example_reftable . 14
extractors . 16
focal_refine . 17
get_from . 18
get_LRboot . 19
get_nbCluster_range . 22
goftest . 24
handling_NAs . 26
infer_logLs . 27
infer_SLik_joint . 29
infer_surface . 31
Infusion . 32
init_reftable . 33
MSL . 34
multi_binning . 36
options . 37
plot.SLik . 39
plot1Dprof . 40
predict.SLik_j . 43
profile.SLik . 44
project.character . 45
refine . 49
rparam . 52
summLik . 54
write_workflow . 55

Index 57

add_reftable Create or augment a list of simulated distributions of summary statis-
tics

Description

add_reftable creates or augments a reference table of simulations, and formats the results appro-
priately for further use. The user does not have to think about this return format. Instead, s-he only
has to think about the very simple return format of the function given as its Simulate argument. The
primary role of his function is to wrap the call(s) of the function specified by Simulate. Depending
on the arguments, parallel or serial computation is performed.

When parallelization is implied, it is performed by by default a “socket” cluster, available on all
operating systems. Special care is then needed to ensure that all required packages are loaded
in the called processes, and that all required variables and functions are passed therein: check the

add_reftable 3

packages and env arguments. For socket clusters, foreach or pbapply is called depending whether
the doSNOW package is attached (doSNOW allows more efficient load balancing than pbapply).

Alternatively, if the simulation function cannot be called directly by the R code, simulated samples
can be added using the newsimuls argument. Finally, a generic data frame of simulated samples
can be reformatted as a reference table by using only the reftable argument.

add_simulation is a wrapper for add_reftable, suitable when nRealizations>1. It is now dis-
tinctly documented: the distinct features of add_simulation were conceived for the first workflow
implemented in Infusion but are somewhat obsolete now.

Usage

add_reftable(reftable=NULL, Simulate, parsTable=par.grid, par.grid=NULL,
nRealizations = 1L, newsimuls = NULL,

verbose = interactive(), nb_cores = NULL, packages = NULL, env = NULL,
control.Simulate=NULL, cluster_args=list(), cl_seed=NULL, ...)

Arguments

reftable Data frame: a reference table. Each row contains parameters value of a sim-
ulated realization of the data-generating process, and the simulated summary
statistics. As parameters should be told apart from statistics by Infusion func-
tions, information about parameter names should be attached to the reftable
if it is not available otherwise. Thus if no parsTable is provided, the reftable
should have an attribute "LOWER" (a named vectors giving lower bounds for the
parameters which will vary in the analysis, as in the return value of the function).

Simulate An *R* function, or the name (as a character string) of an *R* function used to
generate summary statistics for samples form a data-generating process. When
an external simulation program is called, Simulate must therefore be an R func-
tion wrapping the call to the external program. Two function APIs are handled:
* If the function has a parsTable argument, it must return a data frame of sum-
mary statistics, each line of which contains the vector of summary statistics
for one realization of the data-generating process. The parsTable argument of
add_reftable will be passed to Simulate and lines of the output data frame
must be ordered, as in the input parsTable as these two data frames will be
bound together.
* Otherwise, the Simulate function must have one argument for each element
of the parameter vector (i.e. of each row of parsTable). It must return a vector
of summary statistics with named vector member.

parsTable, par.grid

A data frame of which each line is the vector of parameters needed by Simulate
for each simulation of the data-generating process. par.grid is an alias for
parsTable; the latter argument may be preferred in order not to suggest that the
parameter values should form a regular grid.

nRealizations The number of simulated samples of summary statistics, for each parameter
vector (each row of parsTable). If not 1, theold wrkflow is assumed and
add_simulation is called.

4 add_reftable

newsimuls If the function used to generate empirical distributions cannot be called by R,
then newsimuls can be used to provide these distributions. See Details for the
structure of this argument.

nb_cores Number of cores for parallel simulation; NULL or integer value, acting as a short-
cut for cluster_args$spec. This is effective only if the simulation function is
called separately for each row of parsTable. Otherwise, if the simulation func-
tion is called once one the whole parsTable, parallelisation could be controlled
only through that function’s own arguments.

cluster_args A list of arguments, passed to makeCluster. May contain a non-null spec ele-
ment, in which case the distinct nb_cores argument and the global Infusion op-
tion nb_cores are ignored. A typical usage would thus be control_args=list(spec=<number
of 'children'>). Additional elements outfile="log.txt" may be useful to
collect output from the nodes, and type="FORK" may be used to force a fork
cluster on linux(-alikes) (otherwise a socket cluster is set up as this is the de-
fault effect of parallel::makeCluster). Do *not* use a structured list with
an add_reftable element as is possible for refine (see Details of refine doc-
umentation).

verbose Whether to print some information or not.

... Additional arguments passed to Simulate, beyond the parameter vector. These
arguments should be constant through all the simulation workflow.

control.Simulate

A list, used as an exclusive alternative to “. . . ” to pass additional arguments
to Simulate, beyond the parameter vector. The list must contain the same ele-
ments as would otherwise go in the “. . . ” (if control.Simulate is left NULL,
a default value is constructed from the . . .).

packages For parallel evaluation: Names of additional libraries to be loaded on the cores,
necessary for Simulate evaluation.

env For parallel evaluation: an environment containing additional objects to be ex-
ported on the cores, necessary for Simulate evaluation.

cl_seed (all parallel contexts:) Integer, or NULL. If an integer, it is used to initialize
"L'Ecuyer-CMRG" random-number generator. If cl_seed is NULL, the default
generator is selected on each node, where its seed is not controlled. Providing
the seed allows repeatable results for given parallelization settings, but may not
allow identical results across different settings.

Details

The newsimuls argument should have the same structure as the return value of the function itself,
except that newsimuls may include only a subset of the attributes returned by the function. It is thus
a data frame; its required attributes are LOWER and UPPER which are named vectors giving bounds
for the parameters which are variable in the whole analysis (note that the names identify these
parameters in the case this information is not available otherwise from the arguments). The values
in these vectors may be incorrect in the sense of failing to bound the parameters in the newsimuls,
as the actual bounds are then corrected using parameter values in newsimuls and attributes from
reftable.

add_simulation 5

Value

A data.frame (with additional attributes) is returned.

The value has the following attributes: LOWER and UPPER which are each a vector of per-parameter
minima and maxima deduced from any newsimuls argument, and optionally any of the arguments
Simulate, control.Simulate, packages, env, parsTable and reftable (all corresponding to
input arguments when provided, except that the actual Simulate function is returned even if it was
input as a name).

Examples

see main documentation page for the package for other typical usage

add_simulation Create or augment a list of simulated distributions of summary statis-
tics

Description

add_simulation is suitable for the primitive Infusion workflow; otherwise, it is cleaer to call
add_reftable directly. add_simulation creates or augments a list of simulated distributions of
summary statistics, and formats the results appropriately for further use. Alternatively, if the simula-
tion function cannot be called directly by the R code, simulated distributions can be added using the
newsimuls argument, using a simple format (see onedistrib in the Examples). Finally, a generic
data frame of simulations can be reformatted as a reference table by using only the simulations
argument.

Depending on the arguments, parallel or serial computation is performed. When parallelization
is implied, by default a “socket” cluster, available on all operating systems. Special care is then
needed to ensure that all required packages are loaded in the called processes, and that all required
variables and functions are passed therein: check the packages and env arguments. For socket
clusters, foreach or pbapply is called depending whether the doSNOW package is attached (doSNOW
allows more efficient load balancing than pbapply).

Usage

add_simulation(simulations=NULL, Simulate, parsTable=par.grid, par.grid=NULL,
nRealizations=Infusion.getOption("nRealizations"),
newsimuls=NULL, verbose=interactive(), nb_cores=NULL,
packages=NULL, env=NULL, control.Simulate=NULL,
cluster_args=list(), cl_seed=NULL, ...)

Arguments

simulations A list of matrices each representing a simulated distribution for given parameters
in a format consistent with the return format of add_simulation.

nRealizations The number of simulated samples of summary statistics, for each empirical dis-
tribution (each row of par.grid).

6 add_simulation

Simulate An *R* function, or the name (as a character string) of an *R* function used to
generate empirical distributions of summary statistics. When an external simu-
lation program is called, Simulate must therefore be an R function wrapping the
call to the external program. The Simulate function must have one argument
for each element of the parameter vector (i.e. of each row of par.grid). It must
return a vector of summary statistics with named vector members; or a single
matrix of nRealizations simulations, in which case its rows and row names
must represent the summary statistics, it should have nRealizations columns,
and nRealizations should be named integer of the form “c(as_one=.)” (see
Examples).

parsTable, par.grid

A data frame of which each line is the vector of parameters needed by Simulate
for each simulation of the data-generating process. par.grid is an alias for
parsTable; the latter argument may be preferred in order not to suggest that the
parameter values should form a regular grid.

newsimuls If the function used to generate empirical distributions cannot be called by R,
then newsimuls can be used to provide these distributions. See Details for the
structure of this argument.

nb_cores Number of cores for parallel simulation; NULL or integer value, acting as a short-
cut for cluster_args$spec. The effect is complicated: see Details.

cluster_args A list of arguments, passed to makeCluster. May contain a non-null spec ele-
ment, in which case the distinct nb_cores argument and the global Infusion op-
tion nb_cores are ignored. A typical usage would thus be control_args=list(spec=<number
of 'children'>). Additional elements outfile="log.txt" may be useful to
collect output from the nodes, and type="FORK" may be used to force a fork
cluster on linux(-alikes) (otherwise a socket cluster is set up as this is the default
effect of parallel::makeCluster).

verbose Whether to print some information or not.

... Arguments passed to add_reftable (and possibly beyond, to the simulation
function: see nsim argument of myrnorm_tab() in the Examples. These argu-
ments should be constant through all the simulation workflow.

control.Simulate

A list, used as an exclusive alternative to “. . . ” to pass additional arguments to
Simulate, beyond the parameter vector. The list must contain the same elements
as would go in the “. . . ”.

packages For parallel evaluation: Names of additional libraries to be loaded on the cores,
necessary for Simulate evaluation.

env For parallel evaluation: an environment containing additional objects to be ex-
ported on the cores, necessary for Simulate evaluation.

cl_seed Integer, or NULL. Providing the seed was conceived to allow repeatable results
at least for given parallelization settings, if not identical results across different
parallelization contexts. However, this functionality may have been been lost as
the code was adapted for the up-to-date workflow using add_reftable.

add_simulation 7

Details

The newsimuls argument should have the same structure as the return value of the function it-
self, except that newsimuls may include only a subset of the attributes returned by the function.
newsimuls should thus be list of matrices, each with a par attribute (see Examples). Rows of each
matrix stand for simulation replicates and columns stand for the different summary statistics.

When nRealizations>1L, if nb_cores is unnamed or has name "replic" and if the simulation
function does not return a single table for all replicates (thus, if nRealizations is not a named
integer of the form “c(as_one=.)”, parallelisation is over the different samples for each parameter
value (and the seed of the random number generator is not controlled in a parallel context). For
any other explicit name (e.g., nb_cores=c(foo=7)), or if nRealizations is a named integer of the
form “c(as_one=.)”, parallelisation is over the parameter values (the rows of par.grid). In all
cases, the progress bar is over parameter values. See Details in Infusion.options for the subtle
way these different cases are distinguished in the progress bar.

Using a FORK cluster with nRealizations>1 is warned as unreliable: in particular, anyone trying
this combination should check whether other desired controls, such as random generator seed, or
progress bar are effective.

Value

If nRealizations>1L, the return value is an object of class EDFlist, which is a list-with-attributes
of matrices-with-attribute. Each matrix contains a simulated distribution of summary statistics for
given parameters, and the "par" attribute is a 1-row data.frame of parameters. If Simulate is used,
this must give all the parameters to be estimated; otherwise it must at least include all variable
parameters in this or later simulations to be appended to the simulation list.

The value has the following attributes: LOWER and UPPER which are each a vector of per-parameter
minima and maxima deduced from any newsimuls argument, and optionally any of the arguments
Simulate, control.Simulate, packages, env, par.grid and simulations (all corresponding
to input arguments when provided, except that the actual Simulate function is returned even if it
was input as a name).

If nRealizations=1 add_reftable is called: see its distinct return value.

Examples

Examples using init_grid and add_simulation, for primitive workflow
Use init_reftable and add_reftable for the up-to-date workflow

example of building a list of simulations from scratch:
myrnorm <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

}
set.seed(123)
onedistrib <- t(replicate(100,myrnorm(1,1,10))) # toy example of simulated distribution
attr(onedistrib,"par") <- c(mu=1,sigma=1,sample.size=10) ## important!
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

newsimuls=list("example"=onedistrib))

standard use: smulation over a grid of parameter values

8 add_simulation

parsp <- init_grid(lower=c(mu=2.8,s2=0.2,sample.size=40),
upper=c(mu=5.2,s2=3,sample.size=40))

simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,
par.grid = parsp[1:7,])

Not run: # example continued: parallel versions of the same
Slow computations, notably because cluster setup is slow.

... parallel over replicates, serial over par.grid rows
=> cl_seed has no effect and can be ignored
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

par.grid = parsp[1:7,], nb_cores=7)
#
... parallel over 'par.grid' rows => cl_seed is effective
simuls <- add_simulation(NULL, Simulate="myrnorm", nRealizations=500,

cl_seed=123, # for repeatable results
par.grid = parsp[1:7,], nb_cores=c(foo=7))

End(Not run)

####### Example where a single 'Simulate' returns all replicates:

myrnorm_tab <- function(mu,s2,sample.size, nsim) {
By default, Infusion.getOption('nRealizations') would fail on nodes!
replicate(nsim,

myrnorm(mu=mu,s2=s2,sample.size=sample.size))
}

parsp <- init_grid(lower=c(mu=2.8,s2=0.2,sample.size=40),
upper=c(mu=5.2,s2=3,sample.size=40))

'as_one' syntax for 'Simulate' function returning a simulation table:
simuls <- add_simulation(NULL, Simulate="myrnorm_tab",

nRealizations=c(as_one=500),
nsim=500, # myrnorm_tab() argument, part of the 'dots'
par.grid=parsp)

Not run: # example continued: parallel versions of the same.
Slow cluster setup again
simuls <- add_simulation(NULL,Simulate="myrnorm_tab",par.grid=parsp,

nb_cores=7L,
nRealizations=c(as_one=500),
nsim=500, # myrnorm_tab() argument again
cl_seed=123, # for repeatable results
need to export other variables used by *myrnorm_tab* to the nodes:
env=list2env(list(myrnorm=myrnorm)))

End(Not run)

see main documentation page for the package for other typical usage

check_raw_stats 9

check_raw_stats Check linear dependencies among raw summary statistics

Description

A convenient wrapper function for caret::findLinearCombos, allowing to detect linear depen-
dencies among the statistics, and optionally to remove variables that induce them.

Usage

check_raw_stats(x, statNames, remove = FALSE, verbose = interactive())

Arguments

x data frame (particularly inheriting from class "reftable", i.e. a reference table
of simulations); or possibly a matrix with column names

statNames Character vector: variables among which dependencies are sought. Must belong
column names of x. For a reftable, this argument is optional and by default, all
raw statistic are included. For other classes of input, this argument is required.

remove Boolean: whether to return x with “offending” columns removed, or other in-
formation.

verbose Boolean: whether to display some messages.

Value

Return type depends on the availability of the caret package, and on the remove argument, as
follows. if remove=TRUE, an object of the same class as x is returned (with redundant columns
removed). If remove=FALSE, either the caret package is available, in which case a list is returned
with the same structure as the return value of caret::findLinearCombos but with column indices
replaced by column names; or a message pointing that caret is not available is returned (and another
is printed, only once per session).

confint.SLik Compute confidence intervals by (profile) summary likelihood

Description

This takes an SLik object (as produced by MSL) and deduces confidence bounds for each parameter,
using a (profile, if relevant) likelihood ratio method.

10 densv

Usage

S3 method for class 'SLik'
confint(object, parm,

level=0.95, verbose=interactive(),
fixed=NULL,which=c(TRUE,TRUE),...)

Arguments

object an SLik or SLik_j object

parm The parameter which confidence bounds are to be computed

level The desired coverage of the interval

verbose Whether to print some information or not

fixed When this is NULL the computed interval is a profile confidence interval over
all parameters excluding parm. fixed allows one to set fixed values to some of
these parameters.

which A pair of booleans, controlling whether to compute respectively the lower and
the upper CI bounds.

... further arguments passed to or from other methods (currently not used).

Value

A list with sublists for each parameter, each sublist containing of three vectors: the bounds of the
one-dimensional confidence interval; the “full” (only parameters variable in the SLik object are
considered) parameter point for the lower bound, and the full parameter point for the upper bound

Examples

see main documentation page for the package

densv Saved computations of inferred log-likelihoods

Description

These are saved results from toy examples used in other documentation page for the package. It
gives estimates by simulation of log-likelihoods of the (mu,s2) parameters of a Gaussian distribu-
tion for a given sample of size 20 with mean 4.1416238 and (bias-corrected) variance 0.9460778.
densv is based on the sample mean and sample variance as summary statistics, and densb on more
contrived summary statistics.

dMixmod 11

Usage

data("densv")
data("densb")

Format

Data frames (with additional attributes) with observations on the following 5 variables.

mu a numeric vector; mean parameter of simulated Gaussian samples

s2 a numeric vector; variance parameter of simulated Gaussian samples

sample.size a numeric vector; size of simulated Gaussian samples

logL a numeric vector; log probability density of a given statistic vector inferred from simulated
values for the given parameters

isValid a boolean vector. See infer_logLs for its meaning.

Both data frames are return objects of a call to infer_logLs, and as such they includes attributes
providing information about the parameter names and statistics names (not detailed here).

See Also

See step (3) of the workflow in the Example on the main Infusion documentation page, showing
how densv was produced, and the Example in project showing how densb was produced.

dMixmod Internal S4 classes.

Description

The objects or methods referenced here are not to be called by the user, or are waiting for documen-
tation to be written.

dMixmod is an S4 class describing some distributions that extend the multivariate gaussian mixture
models (MGMM) by possibly involving discrete probability masses for some variables and gaussian
mixtures for other variables conditional on such discrete events. In terms of the represented prob-
ability models, and of its slots, is effectively extends the MixmodResults class from the Rmixmod
package. But it does not formally extends this class in terms of OOP programming. It should not
be considered as part of the programming interface, and may be subject to backward-incompatible
modifications without notice. In the current implementation it cannot represent general mixtures of
discrete probabilities and MGMMs, and may yield correct results only for the degenerate case of
pure MGMMs or when inference can be based on the conditional density of continuous variables
conditional on the (joint-, if relevant) discrete event observed in the data.

Usage

dMixmod: Don't try to use it! It's for programming only.

12 example_raw

Value

A dMixmod object has the same slots as a MixmodResults object, plus additional ones: @freq is
the frequency of the conditioning event for the gaussian mixture model. In the Infusion code, this
event is defined jointly by the “observed” summary statistics and the reference simulation table:
a probability mass for specific values v is identified from the simulated distribution of summary
statistics in the reference table, and freq is an estimate of the probability mass if the summary
statistics match v, or the converse probability if they do not match.

Note

Use str(attributes(.)) to see the slots of a dMixmod object if str(.) does not work.

Examples

The dMixmod object can be used internally to handle repeated and boundary values
of summary statistics. The user has to add an attribute to the observations,
as explained in help("boundaries-attribute"):
Sobs <- c(mean=4.321, se=0.987) # hypothetical observation
attr(Sobs,"boundaries") <- c(someSummStat=-1)

example_raw Workflow for primitive method, without projections

Description

Example of the workflow with add_simulation), implementing the method described in the origi-
nal publication (Rousset et al. 2017 <doi:10.1111/1755-0998.12627>).

Examples

The following example illustrates the workflow.
However, most steps run longer than accepted by the CRAN checks,
So by default they will not run.
##
(1) The user must provide the function for simulation of summary statistics
myrnorm <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

} # simulate means and variances of normal samples of size 'sample.size'
#
pseudo-sample:
set.seed(123)
Sobs <- myrnorm(mu=4,s2=1,sample.size=40) ## stands for the actual data to be analyzed
#
(2) Generate, and simulate distributions for,
an irregular grid of parameter values, with some replicates
if (Infusion.getOption("example_maxtime")>40) {

parsp <- init_grid(lower=c(mu=2.8,s2=0.2,sample.size=40),
upper=c(mu=5.2,s2=3,sample.size=40))

example_raw_proj 13

simuls <- add_simulation(NULL,Simulate="myrnorm",par.grid=parsp)

(3) infer logL(pars,stat.obs) for each simulated 'pars'
Relatively slow, hence saved as data 'densv'
densv <- infer_logLs(simuls,stat.obs=Sobs)

} else {
data(densv)
.Random.seed <- saved_seed

}
#
(4) infer a log-likelihood surface and its maximum;
plot and extract various information.
if (Infusion.getOption("example_maxtime")>11) {
slik <- infer_surface(densv)
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
plot(slik)
profile(slik,c(mu=4)) ## profile summary logL for given parameter value
confint(slik,"mu") ## compute confidence interval for given parameter
plot1Dprof(slik,pars="s2",gridSteps=40) ## 1D profile

}
#
(5) ## refine iteratively
if (Infusion.getOption("example_maxtime")>39) {
slik <- refine(slik)

}

example_raw_proj Workflow for primitive method, with projections

Description

Example of the workflow with add_simulation), implementing the method described in the origi-
nal publication (Rousset et al. 2017 <doi:10.1111/1755-0998.12627>), modified to use projectors.

Examples

if (Infusion.getOption("example_maxtime")>170) {
Normal(mu,sd) model, with inefficient raw summary statistics:
To illustrate that case we transform normal random deviates rnorm(,mu,sd)
so that the mean of transformed sample is not sufficient for mu,
and the variance of transformed sample is not sufficient for sd.
blurred <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=20) ## stands for the actual data to be analyzed

14 example_reftable

Sampling design as in canonical example
parsp <- init_grid(lower=c(mu=2.8,s2=0.4,sample.size=20),

upper=c(mu=5.2,s2=2.4,sample.size=20))
simulate distributions
dsimuls <- add_simulation(,Simulate="blurred", par.grid=parsp)

Use projection to construct better summary statistics for each each parameter
mufit <- project("mu",stats=c("mean","var"),data=dsimuls)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls)

additional plots for some projection method
if (inherits(mufit,"HLfit")) mapMM(mufit,map.asp=1,

plot.title=title(main="prediction of normal mean",xlab="exp mean",ylab="exp var"))
if (inherits(s2fit,"HLfit")) mapMM(s2fit,map.asp=1,

plot.title=title(main="prediction of normal var",xlab="exp mean",ylab="exp var"))

apply projections on simulated statistics
corrSobs <- project(dSobs,projectors=list("MEAN"=mufit,"VAR"=s2fit))
corrSimuls <- project(dsimuls,projectors=list("MEAN"=mufit,"VAR"=s2fit))

Analyze 'projected' data as any data (cf canonical example)
densb <- infer_logLs(corrSimuls,stat.obs=corrSobs)
} else data(densb)
#########
if (Infusion.getOption("example_maxtime")>10) {
slik <- infer_surface(densb) ## infer a log-likelihood surface
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
}
if (Infusion.getOption("example_maxtime")>500) {
slik <- refine(slik,10, update_projectors=TRUE) ## refine iteratively
}

example_reftable Workflow for method with reference table

Description

Examples of workflow with a reference table produced by add_reftable, possibly faster in many
applications than the originally described method.

Examples

if (Infusion.getOption("example_maxtime")>46) {

Normal(mu,sd) model, with inefficient raw summary statistics:
To illustrate that case we transform normal random deviates rnorm(,mu,sd)
so that the mean of transformed sample is not sufficient for mu,
and the variance of transformed sample is not sufficient for sd.
blurred <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))

example_reftable 15

s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

pseudo-sample which stands for the actual data to be analyzed:
set.seed(123)
dSobs <- blurred(mu=4,s2=1,sample.size=40)

Construct reference table:
parsp_j <- data.frame(mu=runif(600L,min=2.8,max=5.2),

s2=runif(600L,min=0.4,max=2.4),sample.size=40)
dsimuls <- add_reftable(,Simulate="blurred",par.grid=parsp_j,verbose=FALSE)

#- When no 'Simulate' function is provided,
#- but only a data.frame 'toydf' of simulations,
#- a formal reference table can be produced by
dsimuls <- structure(toydf, LOWER=c(mu=2,s2=0,sample.size=40))
dsimuls <- add_reftable(dsimuls)
#- where the 'LOWER' attribute tells
#- the parameters apart from the summary statistics.

Construct projections
mufit <- project("mu",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls,verbose=FALSE)
dprojectors <- list(MEAN=mufit,VAR=s2fit)

Apply projections on simulated statistics and 'data':
dprojSimuls <- project(dsimuls,projectors=dprojectors,verbose=FALSE)
dprojSobs <- project(dSobs,projectors=dprojectors)

Summary-likelihood inference:
Infer log-likelihood surface
slik_j <- infer_SLik_joint(dprojSimuls,stat.obs=dprojSobs,verbose=TRUE)
Find maximum, confidence intervals...
slik_j <- MSL(slik_j)

Convenience function for plotting projections...
plot_proj(slik_j, parm="mu", proj="MEAN")

... and for computing likelihoods for new parameters and/or data:
summLik(slik_j, parm=slik_jMSLMSLE+0.1)

refine estimates iteratively
slik_j <- refine(slik_j,maxit=5, update_projectors=TRUE)

if (Infusion.getOption("example_maxtime")>99) { # Post-fit procedures,
all with distinct documentation:

plot(slik_j)
profile(slik_j,c(mu=4)) ## profile summary logL for given parameter value
confint(slik_j,"mu") ## compute 1D confidence interval for given parameter
plot1Dprof(slik_j,pars="s2",gridSteps=40) ## 1D profile
summary(slik_j) # or print()

16 extractors

logLik(slik_j)

SLRT(slik_j, h0=slik_jMSLMSLE+0.1, nsim = 100L) # LRT
SLRT(slik_j, h0=slik_jMSLMSLE[1]+0.1, nsim = 100L) # profile LRT

goftest(slik_j) # goodness of fit test

Low-level predict() method (rarely directly used, otherwise see its documentation!)
predict(slik_j, newdata = slik_jMSLMSLE) # the 'data' are here parameters!

}
}

extractors Summary, print and logLik methods for Infusion results.

Description

summary prints information about the fit. print is an alias for summary. logLik extracts the log-
likelihood (exact or approximated).

Usage

S3 method for class 'SLik'
summary(object, ...)
S3 method for class 'SLik'
print(x, ...)
S3 method for class 'SLik'
logLik(object, ...)
and identical usage for 'SLik_j' objects

Arguments

object, x An object of class SLik or SLik_j;

... further arguments passed to or from other methods (currently without any spe-
cific effect).

Value

logLik returns the inferred likelihood maximum, with attribute RMSE giving its root means square
error of estimation. summary and summary return the object invisibly. They print details of the fits
in a convenient form.

Note

See workflow example in example_reftable.

focal_refine 17

See Also

See get_from for a more general interface for extracting elements from Infusion results, and
summLik for using a fit object to evaluate the likelihood function for distinct parameter values and
even distinct data.

Examples

See Note

focal_refine Refine summary likelihood profile in focal parameter values

Description

This function refines an SLik_j object in a focused way defined by focal parameter values. It is
paticularly useful to check a suspect pattern in a likelihood profile. If there is a suspect dip or peak at
value <somepar>=<somevalue>, focal_refine(<SLik_j object>, focal=c(<somepar>=<somevalue>),
size=<size>) will define <size> parameter points near c(<somepar>=<somevalue>) and (subject
to these points being in the parameter bounds of the object) simulate new samples for these param-
eter points and refine the object using these new simulations.

Usage

focal_refine(object, focal, size, plotprof = TRUE, ...)

Arguments

object An object of class SLik_j.

focal Parameter value(s) (as a vector of named values)

size Target number of points to add to the reference table

plotprof Whether to replot a likelihood profile (1D or 2D depending on the dimension of
focal).

... Further arguments passed to profile.SLik_j (but not including argument return.optim)
or refine.

Value

The updated object

18 get_from

Examples

Not run:
Using the slik_j object from the toy example in help("example_reftable"):

plot1Dprof(slik_j,"s2")
slik_fix <- focal_refine(slik_j,focal=c(s2=2), size=100)
plot1Dprof(slik_fix,"s2")

In that case the effect is not spectacular because
there is no major problem in the starting profile.

End(Not run)

get_from Backward-compatible extractor from summary-likelihood objects

Description

A generic function, whose default method works for list, and with specific methods for objects
inheriting from classes SLik_j and SLik.

Usage

get_from(object, which, ...)

S3 methods with additional argument(s)
S3 method for class 'SLik'
get_from(object, which, raw=FALSE, force=FALSE, ...)
S3 method for class 'SLik_j'
get_from(object, which, raw=FALSE, force=FALSE, ...)

Arguments

object Any object with a list structure.

which Character: names of element to be extracted.

raw Boolean: if TRUE, object[[which]] is returned, without any particular check
of its value. By default, raw is FALSE and various operations may be performed
on the extracted value (see “example” below), including optional recomputation
if force is TRUE.

force Boolean: if TRUE, the extracted element may be computed if it appears to be
missing from the object. This is notably so for which="RMSEs" or which="par_RMSEs";
in these cases, the results of the computation are further saved in the original ob-
ject.

... further arguments passed to or from other methods (currently not used).

get_LRboot 19

Value

Will depend on which, but aims to retain a convenient format backward compatible with version
1.4.0.

See Also

logLik.

Examples

0bserved summary statistics
(projected, with raw ones as attribute, if relevant)
get_from(slik, "obs")
#
On any summary-likelihood object 'slik':
get_from(slik, which="par_RMSEs") # matrix
despite <object>$par_RMSEs being an environment if
'slik' was created by version > 1.4.0, as then shown by
get_from(slik, which="par_RMSEs", raw=TRUE)
#
Further, if
get_from(slik, which="par_RMSEs")
returns NULL because the element is absent from the object,
then one can force its computation by
get_from(slik, which="par_RMSEs", force=TRUE)
The result are saved in the 'slik' object, so running again
get_from(slik, which="par_RMSEs")
will no longer return NULL.

get_LRboot Summary likelihood ratio tests

Description

get_LRboot provides a fast approximation to bootstrap distribution of likelihood ratio statistic. The
bootstrap distribution of the likelihood ratio (LR) statistic may be used to correct the tests based on
its asymptotic chi-square distribution. However, the standard bootstrap involves resimulating the
data-generating process, given the ML estimates on the original data. This function implements a
fast approximation avoiding such simulation, instead drawing from the inferred distribution of (pro-
jected, if relevant) summary statistics, again given the maximum (summary-)likelihood estimates.

SLRT computes likelihood ratio tests based on the summary-likelihood surface and optionally on
get_LRboot results. Several correction of the basic likelihood ratio test may be reported, some
more speculative than others.

Usage

SLRT(object, h0, nsim=0L, BGP=NULL, ...)
get_LRboot(object, h0_pars = NULL, nsim = 100L, reset = TRUE, BGP=objectMSLMSLE, ...)

20 get_LRboot

Arguments

object an SLik_j object.

h0 Numeric named vector of tested parameter values.

h0_pars either NULL (the default), to approximate the distribution of the LR statistic for
the full vector of estimated parameters; or a vector of names of a subset of this
vector, to approximate the distribution of the profile LR statistic for this subset.

nsim Integer: number of bootstrap replicates. Values lower than the default are not
recommended. Note that this will be ignored if the distribution has previously
been simulated and reset=FALSE.

reset Boolean: Whether to use any previously computed distribution (see Details) or
not.

BGP Named numeric vector of “Bootstrap-Generating Parameters”. Ideally the dis-
tribution of the LR test statistic would be pivotal and thus the parameter values
under which this distribution is simulated would not matter. In practice, simulat-
ing by default its distribution under the “best” available information (the MSLE
for get_LRboot, or the specifically tested hypothesis defined by the h0 argu-
ment of SLRT) may be more accurate than under alternative parametric values.
For h0 being an incomplete parameter vector and BGP is NULL (the default),
SLRT will simulate under a completed parameter vector using estimates of other
parameters maximizing the likelihood profile for h0.

... For SLRT: further arguments passed to get_LRboot. For get_LRboot: further ar-
guments controlling parallelization, including nb_cores. However, paralleliza-
tion may be best ignored in most cases (see Details).

Details

The result of calling get_LRboot (either directly or through SLRT) with given h0_pars is stored in
the object (until the next refine), and this saved result is returned by a next call to get_LRboot
with the same h0_pars if reset=FALSE. The default is however to recompute the distribution
(reset=TRUE).

Parallelization is possible but maybe not useful because computations for each bootstrap replicate
are fast relative to parallelization overhead. It will be called when the . . . arguments include an
nb_cores>1. The . . . may include further arguments passed to dopar, but among the dopar argu-
ments, iseed will be ignored, and fit_env should not be used.

A raw bootstrap p-value can be computed from the simulated distribution as (1+sum(t >= t0))/(N+1)
where t0 is the original likelihood ratio, t the vector of bootstrap replicates and N its length. See
Davison & Hinkley (1997, p. 141) for discussion of the adjustments in this formula. However, a
sometimes more economical use of the bootstrap is to provide a Bartlett correction for the likeli-
hood ratio test in small samples. According to this correction, the mean value m of the likelihood
ratio statistic under the null hypothesis is computed (here estimated by simulation) and the original
LR statistic is multiplied by n/m where n is the number of degrees of freedom of the test. Unfortu-
nately, the underlying assumption that the corrected LR statistic follows the chi-square distribution
does not always work well.

get_LRboot 21

Value

get_LRboot returns a numeric vector representing the simulated distribution of the LR statistic, i.e.
twice the log-likelihood difference, as directly used in pchisq() to get the p-value.

SLRT returns a list with the following element(s), each being a one-row data frame:

basicLRT A data frame including values of the likelihood ratio chi2 statistic, its degrees of
freedom, and the p-value;

and, if a bootstrap was performed:

BartBootLRT A data frame including values of the Bartlett-corrected likelihood ratio chi2
statistic, its degrees of freedom, and its p-value;

rawBootLRT A data frame including values of the likelihood ratio chi2 statistic, its degrees of
freedom, and the raw bootstrap p-value;

safeBartBootLRT

equal to rawBootLRT if the mean bootstrap value of the LR statistic is lower than
the number of degrees of freedom, and to BartBootLRT otherwise.

References

Bartlett, M. S. (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Society
(London) A 160: 268-282.

Davison A.C., Hinkley D.V. (1997) Bootstrap methods and their applications. Cambridge Univ.
Press, Cambridge, UK.

Examples

See help("example_reftable") for SLRT() examples;
continuing from there, after refine() steps for good results:
set.seed(123);mean(get_LRboot(slik_j, nsim=500, reset=TRUE)) # close to df=2
mean(get_LRboot(slik_j, h0_pars = "s2", nsim=500, reset=TRUE)) # close to df=1

Not run:
Simulation study of performance of the corrected LRTs:

Same toy example as in help("example_reftable"):
blurred <- function(mu,s2,sample.size) {

s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
s <- exp(s/4)
return(c(mean=mean(s),var=var(s)))

}

First build a largish reference table and projections to be used in all replicates
Only the 600 first rows will be used as initial reference table for each "data"
#
set.seed(123)
#
parsp_j <- data.frame(mu=runif(6000L,min=2.8,max=5.2),

s2=runif(6000L,min=0.4,max=2.4),sample.size=40)

22 get_nbCluster_range

dsimuls <- add_reftable(,Simulate="blurred",par.grid=parsp_j,verbose=FALSE)
#
mufit <- project("mu",stats=c("mean","var"),data=dsimuls,verbose=TRUE)
s2fit <- project("s2",stats=c("mean","var"),data=dsimuls,verbose=TRUE)
dprojectors <- list(MEAN=mufit,VAR=s2fit)
dprojSimuls <- project(dsimuls,projectors=dprojectors,verbose=FALSE)

Function for single-data analysis:
#
foo <- function(y, refine_maxit=0L, verbose=FALSE) {

dSobs <- blurred(mu=4,s2=1,sample.size=40)
----Inference workflow---
dprojSobs <- project(dSobs,projectors=dprojectors)
dslik <- infer_SLik_joint(dprojSimuls[1:600,],stat.obs=dprojSobs,verbose=FALSE)
dslik <- MSL(dslik, verbose=verbose, eval_RMSEs=FALSE)
if (refine_maxit) dslik <- refine(dslik, maxit=refine_maxit)
---- LRT---
lrt <- SLRT(dslik, h0=c(s2=1), nsim=200)
c(basic=lrt$basicLRT$p_value,raw=lrt$rawBootLRT$p_value,
bart=lrt$BartBootLRT$p_value,safe=lrt$safeBartBootLRT$p_value)

}

Simulations using convenient parallelization interface:
#
library(doSNOW) # optional
#
bootreps <- spaMM::dopar(matrix(1,ncol=200,nrow=1), # 200 replicates of foo()
fn=foo, fit_env=list(blurred=blurred, dprojectors=dprojectors, dprojSimuls=dprojSimuls),
control=list(.errorhandling = "pass", .packages = "Infusion"),
refine_maxit=5L,
nb_cores=parallel::detectCores()-1L, iseed=123)

#
plot(ecdf(bootreps["basic",]))
abline(0,1)
plot(ecdf(bootreps["bart",]), add=TRUE, col="blue")
plot(ecdf(bootreps["safe",]), add=TRUE, col="red")
plot(ecdf(bootreps["raw",]), add=TRUE, col="green")
#
Note that refine() iterations are important for good performance.
Without them, even a larger reftable of 60000 lines
may exhibit poor results for some of the CI types.

End(Not run)

get_nbCluster_range Control of number of components in Gaussian mixture modelling

Description

These functions implement the default values for the number of components tried in Gaussian mix-
ture modelling (matching the nbCluster argument of Rmixmod::mixmodCluster()). get_nbCluster_range

get_nbCluster_range 23

allows the user to reproduce the internal rules used by Infusion to determine this argument. seq_nbCluster
is a wrapper to the function defined by the seq_nbCluster global option of the package. Its default
result is a sequence of integers determined by the number of rows of the data (see Infusion.options).
get_nbCluster_range() further checks the feasibility of the values generated by seq_nbCluster()),
using additional criteria involving the number of columns of the data to determine the maximum fea-
sible number of clusters. This maximum is controlled by the function defined by the maxnbCluster
global option of the package.

refine_nbCluster controls the default number of clusters of refine: it gets the range from
seq_nbCluster and keeps only the maximum value of this range if this maximum is higher than
the onlymax argument.

Adventurous users can change the rules used by Infusion by changing the global options seq_nbCluster
and maxnbCluster (while conforming to the interfaces of these functions). Less ambitiously, they
can for example use the maximum value of the result of get_nbCluster_range() as a single rea-
sonable value for the nbCluster argument of infer_SLik_joint.

Usage

seq_nbCluster(nr)
refine_nbCluster(nr, onlymax=7)
get_nbCluster_range(projdata, nr = nrow(projdata), nc = ncol(projdata),

nbCluster = seq_nbCluster(nr))

Arguments

projdata data frame: the data to be clustered, which typically include parameters and
projected summary statistics;

nr integer: number of rows of the data to be clustered;

onlymax integer: see Description;

nc integer: number of columns of the data to be clustered, typically twice the num-
ber of estimated parameters;

nbCluster integer or vector of integers: candidate values, which feasability is checked by
the function.

Value

An integer vector

Examples

Determination of number of clusters when attempting to estimate
20 parameters from a reference table with 30000 rows:
seq_nbCluster(nr=30000L)
get_nbCluster_range(nr=30000L, nc=40L) # nc = *twice* the number of parameters

24 goftest

goftest Assessing goodness of fit of inference using simulation

Description

A goodness-of-fit test is performed in the case projected statistics have been used for inference.
Otherwise some plots of limited interest are produced.

Usage

goftest(object, nsim = 99L, method = "", stats=NULL, plot. = TRUE, nb_cores = NULL,
Simulate = attr(object$logLs, "Simulate"),
packages = attr(object$logLs, "packages"),
env = attr(object$logLs, "env"), verbose = interactive(),
cl_seed=.update_seed(object), get_gof_stats=.get_gof_stats)

Arguments

object an SLik or SLik_j object.

nsim Number of draws of summary statistics.

method For development purposes, not documented.

stats Character vector, or NULL: the set of summary statistics to be used to construct
the test. If NULL, the union, across all projections, of the raw summary statistics
used for projections is potentially used for goodness of fit; however, if this set is
too large for gaussian mixture modelling, a subset of variable may be selected.
How they are selected is not yet fully settled (see Details).

plot. Control diagnostic plots. plot. can be of logical, character or numeric type. If
plot. is FALSE, no plot is produced. If plot. is TRUE (the default), a data frame
of up to 8 goodness-of-fit statistics (the statistics denoted u in Details) is plotted.
If more than eight raw summary statistics (denoted s in Details) were used, then
only the first eight u are retained (see Details for the ordering of the us here). If
plot. is a numeric vector, then u[plot.] are retained (possibly more than 8
statistics, as in the next case). If plot. is a character vector, then it is used to
match the names of the u statistics (not of s) to be retained in the plot; the names
of u are built from names of s by wrapping the latter within "Res(".")" (see
axes labels of default plots for examples of valid names).

nb_cores, Simulate, packages, env, verbose

See same-named add_simulation arguments.

cl_seed NULL or integer (see refine for Details).

get_gof_stats function for selecting raw statistics (see Details).

goftest 25

Details

Testing goodness-of-fit: The test is somewhat heuristic but appears to give reasonable results (the
Example shows how this can be verified). It assumes that all summary statistics are reduced to
projections predicting all model parameters. It is then conceived as if any projection p predicting
a parameter were a sufficient statistic for this parameter, given the information contained in the
summary statistics s (this is certainly the ideal objective of machine-learning regression methods).
Then a statistic u independent (under the fitted model) from all projections should be a suitable
statistic for testing goodness of fit: if the model is correctly specified, the quantile of observed u, in
the distribution of u under the fitted model, should be uniformly distributed over repeated sampling
under the data-generating process. The procedure constructs statistics uncorrelated to all p (over
repeated sampling under the fitted model) and proceeds as if they were independent from p (rather
than simply uncorrelated). A number (depending on the size of the reference table) of statistics u
uncorrelated to p are then defined. Each such statistic is obtained as the residual of the regression
of a given raw summary statistic to all projections, where the regression input is a simulation table
of nsim replicates of s under the fitted model, and of their projections p (using the “projectors”
constructed from the full reference table). The latter regression involves one more, small-nsim,
approximation (as it is the sample correlation that is zeroed) but using the residuals is crucially
better than using the original summary statistics (as some ABC software may do). An additional
feature of the procedure is to construct a single test statistic t from joint residuals u, by estimating
their joint distribution (using Gaussian mixture modelling) and letting t be the density of u in this
distribution.

Selection of raw summary statistics: See the code of the Infusion:::..get_gof_stats function
for the method used. It requires that ranger has been used to produce the projectors, and that
the latter include variable importance statistics (by default, Infusion calls ranger with argument
importance="permutation"). .get_gof_stats then selects the raw summary statistics with least
importance over projections (this may not be optimal, and in particular appears redundant with the
procedure described below to construct goodness-of-fit statistics from raw summary statistics; so
this might change in a later version), and returns a vector of names of raw statistics, sorted by
increasing least-importance. The number of summary statistics can be controlled by the global
package option gof_nstats_fn, a function with arguments nr and nstats for, respectively, the
number of simulations of the processus (as controlled by goftest(.,nsim)) and the total number
of raw summary statistics used in the projections.

The diagnostic plot will show a data frame of residuals u of the summary statistics identified as
the first elements of the vector returned by Infusion:::..get_gof_stats, i.e. again a set of raw
statistics with least-importance over projectors.

Value

A list with currently a single element

pval The p-value of the test (NULL if the test is not feasible).

Examples

See end of example("example_reftable") for minimal example.

Not run:
Performance of GoF test over replicate draws from data-generating process

26 handling_NAs

First, run
example("example_reftable")
(at least up to the final 'slik_j' object), then

as a shortcut, the same projections will be used in all replicates:
dprojectors <- slik_j$projectors

set.seed(123)
gof_draws <- replicate(200, {

cat(" ")
dSobs <- blurred(mu=4,s2=1,sample.size=40)
----Inference workflow---
dprojSobs <- project(dSobs,projectors=dprojectors)
dslik <- infer_SLik_joint(dprojSimuls,stat.obs=dprojSobs,verbose=FALSE)
dslik <- MSL(dslik, verbose=FALSE, eval_RMSEs=FALSE)
----GoF test---
gof <- goftest(dslik,nb_cores = 1L, plot.=FALSE,verbose=FALSE)
cat(unlist(gof))
gof

})
~ uniform distribution under correctly-specified model:
plot(ecdf(unlist(gof_draws)))

End(Not run)

handling_NAs Discrete probability masses and NA/NaN/Inf in distributions of sum-
mary statistics.

Description

This explains the use of the boundaries attribute of observed statistics to handle (1) values of the
summary statistics that can occur with some probability mass; (2) special values (NA/NaN/Inf) in
distributions of summary statistics. This further explains why Infusion handles special values by
removing affected distributions unless the boundaries attribute is used.

Details

Special values may be encountered in an analysis. For example, trying to estimate a regression co-
efficient when the predictor variable is constant may return a NaN. Since functions such as refine
automatically add simulated distributions, this problem must be automatically handled by the user’s
simulation function or by the package functions, rather than by user’s tinkering with the Infusion
procedures.

The user must consider what s-he would do if actual data also included NA/NaN/Inf values. If
such data would not be subject to a statistical analysis, then the simulation procedure must reflect
that, otherwise the analysis will be biased. The processing of reference tables by Infusion functions
applies na.omit() on the tables so any line containing NA’s will be removed. The drawbacks

infer_logLs 27

are that the number of informative simulations is reduced and that inference will be difficult if the
data-generating parameters were indeed prone to induce data that would not be subject to statistical
analysis. Thus, it may be necessary to simulate alternative data until no special values are obtained
and the target size of the simulated distribution is reached. One solution is for the user to write a
simulation function that calls itself recursively until a valid summary statistic is produced. Care is
then needed to avoid infinite recursion (which might well indicate unlikely parameter values).

Alternatively, if one considers that special values are informative about parameters (in the above
example of a regression coefficient, if a constant predictor variable says something about the pa-
rameters), then NA/NaN/Inf must be replaced by a (fixed) dummy numerical value which is flagged
to be distinctly handled, using the boundaries attribute of the observed summary statistics. The
simulation function should return statistic foo=-1 (say) instead of foo=NaN, and one should then
set attr(<observed>,"boundaries") <- c(foo=-1).

The boundary attribute is also useful to handle all values of the summary statistics that can occur
with some probability mass. For example if the estimate est_p of a probability takes values 0 or 1
with positive probability, one should set attr(<observed>,"boundaries") <- c(p_est=0,p_est=1).

infer_logLs Infer log Likelihoods using simulated distributions of summary statis-
tics

Description

For each simulated distribution of summary statistics, infer_logLs infers a probability density
function, and the density of the observed values of the summary statistics is deduced. By default,
inference of each density is performed by infer_logL_by_Rmixmod, which fits a distribution of
summary statistics using procedures from the Rmixmod package.

Usage

infer_logLs(object, stat.obs,
logLname = Infusion.getOption("logLname"),
verbose = list(most=interactive(),

final=FALSE),
method = Infusion.getOption("mixturing"),
nb_cores = NULL, packages = NULL, cluster_args,
...)

infer_tailp(object, refDensity, stat.obs,
tailNames=Infusion.getOption("tailNames"),
verbose=interactive(), method=NULL, cluster_args, ...)

infer_logL_by_GLMM(EDF,stat.obs,logLname,verbose)
infer_logL_by_Rmixmod(EDF,stat.obs,logLname,verbose)
infer_logL_by_mclust(EDF,stat.obs,logLname,verbose)
infer_logL_by_Hlscv.diag(EDF,stat.obs,logLname,verbose)

28 infer_logLs

Arguments

object A list of simulated distributions (the return object of add_simulation)

EDF An empirical distribution, with a required par attribute (an element of the object
list).

stat.obs Named numeric vector of observed values of summary statistics.

logLname The name to be given to the log Likelihood in the return object, or the root of
the latter name in case of conflict with other names in this object.

tailNames Names of “positives” and “negatives” in the binomial response for the inference
of tail probabilities.

refDensity An object representing a reference density (such as an HLfit fit object or other
objects with a similar predict method) which, together with the density inferred
from each empirical density, defines a likelihood ratio used to define a rejection
region.

verbose A list as shown by the default, or simply a vector of booleans, indicating re-
spectively whether to display (1) some information about progress; (2) a final
summary of the results after all elements of simuls have been processed. If a
count of ’outlier’(s) is reported, this typically means that stat.obs is not within
the envelope of a simulated distribution (or whatever other meaning the user
attaches to an FALSE isValid code: see Details)

method A function for density estimation. See Description for the default behaviour and
Details for the constraints on input and output of the function.

nb_cores Number of cores for parallel computation. The default is spaMM.getOption("nb_cores"),
and 1 if the latter is NULL. nb_cores=1 which prevents the use of parallelisation
procedures.

cluster_args A list of arguments, passed to makeCluster. May contain a non-null spec ele-
ment, in which case the distinct nb_cores argument is ignored.

packages For parallel evaluation: Names of additional libraries to be loaded on the cores,
necessary for evaluation of a user-defined ’method’.

... further arguments passed to or from other methods (currently not used).

Details

By default, density estimation is based on Rmixmod methods. Other available methods are not rou-
tinely used and not all of Infusion features may work with them. The function Rmixmod::mixmodCluster
is called, with arguments nbCluster=seq_nbCluster(nr=nrow(data)) and mixmodGaussianModel=Infusion.getOption("mixmodGaussianModel").
If Infusion.getOption("seq_nbCluster") specifies a sequence of values, then several cluster-
ings are computed and AIC is used to select among them.

infer_logL_by_GLMM, infer_logL_by_Rmixmod, infer_logL_by_mclust, and infer_logL_by_Hlscv.diag
are examples of the method that may be provided for density estimation. Other methods may be
provided with the same arguments. Their return value must include the element logL, an estimate
of the log-density of stat.obs, and the element isValid with values FALSE/TRUE (or 0/1). The
standard format for the return value is unlist(c(attr(EDF,"par"),logL,isValid=isValid)).

isValid is primarily intended to indicate whether the log likelihood of stat.obs inferred by a given
density estimation method was suitable input for inference of the likelihood surface. isValid has

infer_SLik_joint 29

two effects: to distinguish points for which isValid is FALSE in the plot produced by plot.SLik;
and more critically, to control the sampling of new parameter points within refine so that points
for which isValid is FALSE are less likely to be sampled.

Invalid values may for example indicate a likelihood estimated as zero (since log(0) is not suitable
input), or (for density estimation methods which may infer erroneously large values when extrap-
olating), whether stat.obs is within the convex hull of the EDF. In user-defined methods, invalid
inferred logL should be replaced by some alternative low estimate, as all methods included in the
package do.

The source code of infer_logL_by_Hlscv.diag illustrates how to test whether stat.obs is within
the convex hull of the EDF, using functions resetCHull and isPointInCHull (exported from the
blackbox package).

infer_logL_by_Rmixmod calls Rmixmod::mixmodCluster infer_logL_by_mclust calls mclust::densityMclust,
infer_logL_by_Hlscv.diag calls ks::kde, and infer_logL_by_GLMM fits a binned distribution
of summary statistics using a Poisson GLMM with autocorrelated random effects, where the bin-
ning is based on a tesselation of a volume containing the whole simulated distribution. Limited
experiments so far suggest that the mixture models methods are fast and appropriate (Rmixmod,
being a bit faster, is the default method); that the kernel smoothing method is more erratic and
moreover requires additional input from the user, hence is not really applicable, for distributions in
dimension d= 4 or above; and that the GLMM method is a very good density estimator for d=2 but
will challenge one’s patience for d=3 and further challenge the computer’s memory for d=4.

Value

For infer_logLs, a data frame containing parameter values and their log likelihoods, and additional
information such as attributes providing information about the parameter names and statistics names
(not detailed here). These attributes are essential for further inferences.

See Details for the required value of the methods called by infer_logLs.

See Also

See step (3) of the workflow in the Example on the main Infusion documentation page.

infer_SLik_joint Infer a (summary) likelihood surface from a simulation table

Description

This infers the likelihood surface from a simulation table where each simulated data set is drawn for
a distinct (vector-valued) parameter, as is usual for reference tables in ABC. A parameter density is
inferred, as well as a joint density of parameters and summary statistics, and the likelihood surface
is inferred from these two densities.

30 infer_SLik_joint

Usage

infer_SLik_joint(data, stat.obs, logLname = Infusion.getOption("logLname"),
Simulate = attr(data, "Simulate"),
nbCluster= seq_nbCluster(nr=nrow(data)),
using = Infusion.getOption("mixturing"),
verbose = list(most=interactive(),pedantic=FALSE,final=FALSE),
marginalize = TRUE)

Arguments

data A data frame, whose each row contains a vector of parameters and one realiza-
tion of the summary statistics for these parameters.

stat.obs Named numeric vector of observed values of summary statistics.

logLname The name to be given to the log Likelihood in the return object, or the root of
the latter name in case of conflict with other names in this object.

Simulate Either NULL or the name of the simulation function if it can be called from the
R session.

nbCluster controls the nbCluster argument of Rmixmod::mixmodCluster ; a vector of in-
tegers, or "max" which is interpreted as the maximum of the default nbCluster
value.

using Either "Rmixmod" or "mclust" to select the clustering methods used.

marginalize Boolean; whether to derive the clustering of fitted parameters by marginalization
of the joint clustering (default, and introduced in version 1.3.5); or by a distinct
call to a clustering function.

verbose A list as shown by the default, or simply a vector of booleans, indicating re-
spectively whether to display (1) some information about progress; (2) more
information whose importance is not clear to me; (3) a final summary of the
results after all elements of simuls have been processed.

Value

An object of class SLik_j, which is a list including an Rmixmod::mixmodCluster object (or equiv-
alent objects produced by non-default methods), and additional members not documented here. If
projection was used, the list includes a data.frame raw_data of cumulated unprojected simulations.

Examples

if (Infusion.getOption("example_maxtime")>50) {
myrnorm <- function(mu,s2,sample.size) {
s <- rnorm(n=sample.size,mean=mu,sd=sqrt(s2))
return(c(mean=mean(s),var=var(s)))

} # simulate means and variances of normal samples of size 'sample.size'
set.seed(123)
pseudo-sample with stands for the actual data to be analyzed:
ssize <- 40
Sobs <- myrnorm(mu=4,s2=1,sample.size=ssize)
Uniform sampling in parameter space:

infer_surface 31

npoints <- 600
parsp <- data.frame(mu=runif(npoints,min=2.8,max=5.2),

s2=runif(npoints,min=0.4,max=2.4),sample.size=ssize)
Build simulation table:
simuls <- add_reftable(Simulate="myrnorm",par.grid=parsp)
Infer surface:
densv <- infer_SLik_joint(simuls,stat.obs=Sobs)
Usual workflow using inferred surface:
slik_j <- MSL(densv) ## find the maximum of the log-likelihood surface
slik_j <- refine(slik_j,maxit=5)
plot(slik_j)
etc:
profile(slik_j,c(mu=4)) ## profile summary logL for given parameter value
confint(slik_j,"mu") ## compute 1D confidence interval for given parameter
plot1Dprof(slik_j,pars="s2",gridSteps=40) ## 1D profile

}

infer_surface Infer a (summary) likelihood or tail probability surface from inferred
likelihoods

Description

The logLs method uses a standard smoothing method (prediction under linear mixed models, a.k.a.
Kriging) to infer a likelihood surface, using as input likelihood values themselves inferred with
some error for different parameter values. The tailp method use a similar approach for smooth-
ing binomial response data, using the algorithms implemented in the spaMM package for fitting
GLMMs with autocorrelated random effects.

Usage

S3 method for class 'logLs'
infer_surface(object, method="REML",verbose=interactive(),allFix=NULL,...)
S3 method for class 'tailp'
infer_surface(object, method="PQL",verbose=interactive(),allFix,...)

Arguments

object A data frame with attributes, containing independent prediction of logL or of LR
tail probabilities for different parameter points, as produced by infer_logLs or
infer_tailp.

method methods used to estimate the smoothing parameters. If method="GCV", a gener-
alized cross-validation procedure is used (for logLs method only). Other meth-
ods are as described in the HLfit documentation.

verbose Whether to display some information about progress or not.
allFix Fixed values in the estimation of smoothing parameters. For development pur-

poses, not for routine use. For infer_surface.logLs, this should typically
include values of all parameters fitted by spaMM::corrHLfit (ρ, ν, φ, λ, and
$etaFix=β).

32 Infusion

... further arguments passed to or from other methods (currently not used).

Value

An object of class SLik or SLikp, which is a list including an HLfit object as returned by corrHLfit,
and additional members not documented here.

Examples

see main documentation page for the package

Infusion Inference using simulation

Description

Implements a collection of methods to perform inferences based on simulation of realizations of the
model considered. In particular it implements “summary likelihood”, an approach that effectively
evaluates and uses the likelihood of simulated summary statistics.

Details

The methods implemented in Infusion by default assume that the summary statistics have densi-
ties. Special values of some statistic, having discrete probability mass, can be handled using the
boundaries attribute of the observed summary statistics (see handling_NAs for a further use of
this attribute).

Note

See examples example_reftable for the most complete example using up-to-date workflow, and
example_raw_proj or example_raw for older workflows.

Examples

see Note for links to examples.

init_reftable 33

init_reftable Define starting points in parameter space.

Description

These functions sample the space of estimated parameters, and also handle other fixed arguments
that need to be passed to the function simulating the summary statistics (sample size is likely to be
one such argument). The current sampling strategy of these functions is crude but achieves desirable
effects for present applications: it samples the space more uniformly, by generating fewer pairs of
close points than independent sampling of each point would; it is not exactly a regular grid; and
init_grid generates replicates of a few parameter points, which were required in the primitive
workflow for good smoothing of the likelihood surface. init_reftable is a trivial wrapper around
init_grid, setting the number of replicates to zero, which is appropriate in up-to-date workflows.

Usage

init_reftable(lower=c(par=0), upper=c(par=1), steps=NULL,
nUnique=NULL, maxmin=TRUE, jitterFac=0.5)

init_grid(lower=c(par=0), upper=c(par=1), steps=NULL, nUnique=NULL,
nRepl=min(10L,nUnique), maxmin=TRUE, jitterFac=0.5)

Arguments

lower A vector of lower bounds for the parameters, as well as fixed arguments to be
passed to the function simulating the summary statistics. Elements must be
named. Fixed parameters character strings.

upper A vector of upper bounds for the parameters, as well as fixed parameters. Ele-
ments must be named and match those of lower.

steps Number of steps of the grid, in each dimension of estimated parameters. If
NULL, a default value is defined from the other arguments. If a single value is
given, it is applied to all dimensions. Otherwise, this must have the same length
as lower and upper and named in the same way as the variable parameters in
these arguments.

nUnique Number of distinct values of parameter vectors in output. Default is an heuristic
guess for good start from not too many points, computed as floor(50^((v/3)^(1/3)))
where v is the number of variable parameters.

nRepl Number of replicates of distinct values of parameter vectors in output.

maxmin Boolean. If TRUE, use a greedy max-min strategy (GMM, inspired from Ravi
et al. 1994) in the selection of points from a larger set of points generated by
an hypercube-sampling step. If FALSE, sample is instead used for this second
step. This may be useful as the default method becomes slow when thousands
of points are to be sampled.

jitterFac Controls the amount of jitter of the points around regular grid nodes. The default
value 0.5 means that a mode can move by up to half a grid step (independently
in each dimension), so that two adjacent nodes moved toward each other can
(almost) meet each other.

34 MSL

Value

A data frame. Each row defines a list of arguments of vector of the function simulating the summary
statistics.

Note

init_grid is an exported function from the blackbox package.

References

Ravi S.S., Rosenkrantz D.J., Tayi G.K. 1994. Heuristic and special case algorithms for dispersion
problems. Operations Research 42, 299-310.

Examples

set.seed(123)
init_grid()
init_grid(lower=c(mu=2.8,s2=0.5,sample.size=20),

upper=c(mu=5.2,s2=4.5,sample.size=20),
steps=c(mu=7,s2=9),nUnique=63)

MSL Maximum likelihood from an inferred likelihood surface

Description

This computes the maximum of an object of class SLik representing an inferred (summary) likeli-
hood surface

Usage

MSL(object, CIs = TRUE, level = 0.95, verbose = interactive(),
eval_RMSEs = TRUE, cluster_args=list(),init=NULL, prior_logL=NULL,
...)

Arguments

object an object of class SLik_j as produced by infer_SLik_joint (or, in the primi-
tive workflow, of class SLik as produced by infer_surface.logLs).

CIs If TRUE, construct one-dimensional confidence intervals for all parameters.

level Intended coverage probability of the confidence intervals.

verbose Whether to display some information about progress and results.

eval_RMSEs Logical: whether to evaluate prediction uncertainty for likelihoods/ likelihood
ratios/ parameters.

MSL 35

cluster_args A list of arguments, passed to makeCluster, to control parallel computation
of RMSEs. Beware that parallel computation of RMSEs tends to be memory-
intensive. The list may contain a non-null spec element, in which case the
nb_cores global Infusion option is ignored. Do *not* use a structured list with
an RMSE element as is possible for refine (see Details of refine documenta-
tion).

init Initial value for the optimiser. Better ignored.

prior_logL (effective only for up-to-date workflow using gaussian mixture modelling of a
joint distribution of parameters and statistics) a function that returns a vector of
prior log-likelihood values, which is then added to the likelihood deduced from
the summary likelihood analysis. The function’s single argument must handle a
matrix similar to the newdata argument of predict.SLik_j.

... Further arguments passed from or to other methods.

Details

If Kriging has been used to construct the likelihood surface, RMSEs are computed using approximate
formulas for prediction (co-)variances in linear mixed midels (see Details in predict). Otherwise, a
more computer-intensive bootstrap method is used. par_RMSEs are computed from RMSEs and from
the numerical gradient of profile log-likelihood at each CI bound. Only RMSEs, not par_RMSEs, are
compared to precision.

Value

The object is returned invisibly, with the following added members, each of which being (as from
version 1.5.0) an environment:

MSL containing variables MSLE and maxlogL that match the par and value returned by an optim
call. Also contain the hessian of summary likelihood at its maximum.

RMSEs containing, as variable RMSEs, the root mean square errors of the log-likelihood at its inferred
maximum and of the log-likelihood ratios at the CI bounds.

par_RMSEs containing, as variable par_RMSEs, root mean square errors of the CI bounds.

To ensure backward-compatibility of code to possible future changes in the structure of the objects,
the extractor function get_from should be used to extract the RMSEs and par_RMSEs variables from
their respective environments, and more generally to extract any element from the objects.

Examples

see main documentation page for the package

36 multi_binning

multi_binning Multivariate histogram

Description

Constructs a multivariate histogram of the points. Optionally, first tests whether a given value
is within the convex hull of input points and constructs the histogram only if this test is TRUE.
This function is available for development purposes but is not required otherwise . It is sparsely
documented and subject to changes without notice.

Usage

multi_binning(m, subsize=trunc(nrow(m)^(Infusion.getOption("binningExponent"))),
expand=5/100, focal=NULL)

Arguments

m A matrix representing points in d-dimensional space, where d is the number of
columns

subsize A control parameter for an undocumented algorithm

expand A control parameter for an undocumented algorithm

focal Value to be tested for inclusion within the convex hull. Its elements must have
names.

Details

The algorithm may be detailed later.

Value

Either NULL (if the optional test returned FALSE), or an histogram represented as a data frame
each row of which represents an histogram cell by its barycenter (a point in d-dimensional space),
its “binFactor” (the volume of the cell times the total number of observations) and its “count”
(the number of observations within the cell). The returned data frame has the following attributes:
attr(.,"stats") are the column names of the d-dimensional points; attr(.,"count") is the
column name of the count, and attr(.,"binFactor") is the column name of the binFactor.

options 37

options Infusion options settings

Description

Allow the user to set and examine a variety of options which affect operations of the Infusion
package. However, typically these should not be modified, and if they are, not more than once in a
data analysis.

Usage

Infusion.options(...)

Infusion.getOption(x)

Arguments

x a character string holding an option name.

... A named value or a list of named values. The following values, with their de-
faults, are used in Infusion:

mixturing character string: package or function to be used for mixture mod-
elling. Recognized packages are "Rmixmod" (the default) and "mclust";

train_cP_size: Expression for train_cP_size argument of project.character.
trainingsize: Expression for trainingsize argument of project.character.
projKnotNbr = 1000: default value of trainingsize argument of project.character

for REML (as implied by default expression for trainingsize).
logLname = "logL": default value of logLname argument of infer_logLs. The

name given to the inferred log likelihoods in all analyses.
LRthreshold= - qchisq(0.999,df=1)/2: A value used internally by sample_volume

to sample points in the upper region of the likelihood surface, as defined by
the given likelihood ratio threshold.

precision = 0.1: default value of precision argument of refine. Targets
RMSE of log L and log LR estimates.

nRealizations=1000: default value of nRealizations argument of add_simulation.
Number of realizations for each empirical distribution.

mixmodGaussianModel="Gaussian_pk_Lk_Dk_A_Dk": default models used in
clustering by Rmixmod. Run Rmixmod::mixmodGaussianModel() for a list
of possible models, and see the statistical documentation (Mixmod Team
2016) for explanations about them.

seq_nbCluster= function(projdata, nr=nrow(projdata)) {seq(ceiling(nr^0.3))}:
function to control the value of nbCluster used in clustering by Rmixmod
(see Details for discussion of this default).

maxnbCluster = function(projdata) {...} : function to control the maxi-
mum number of clusters (see Details).

38 options

example_maxtime=2.5: Used in the documentation to control whether the longer
examples should be run. The approximate running time of given examples
(or some very rough approximation for it) on one author’s laptop is com-
pared to this value.

nb_cores Number of cores for parallel computations (see Details for imple-
mentation of these).

gof_nstats_fn See goftest.
and possibly other undocumented values for development purposes.

Details

The set of the number of clusters tried (nbCluster argument in Rmixmod) is controlled by two
options: seq_nbCluster and maxnbCluster. The second is used to correct the first, using the
dimensions of the projdata locally used for clustering, which typically differs from the dimensions
of the user-level data (if projections have been applied, in particular). The default upper value of
the nbCluster range is the value recommended in the mixmod statistical documentation (Mixmod
Team, 2016). But this default may be suitable only for low-dimensional data, hence the need for
correcting it bymaxnbCluster.

Infusion can perform parallel computations if several cores are available and requested though
Infusion.options(nb_cores=.). If the doSNOW back-end is attached (by explicit request from the
user), it will be used; otherwise, pbapply will be used. Both provide progress bars, but doSNOW may
provide more efficient load-balancing. The character shown in the progress bar is 'P' for parallel via
doSNOW backend, 'p' for parallel via pbapply functions, and 's' for serial via pbapply functions.
In addition, add_simulation can parallelise at two levels: at an outer level over parameter point, or
at an inner level over simulation replicates for each parameter point. The progress bar of the outer
computation is shown, but the character shown in the progress bar is 'N' if the inner computation
is parallel via the doSNOW backend, and 'n' if it is parallel via pbapply functions. So, one should
see either 'P' or 'N' when using doSNOW.

Value

For Infusion.getOption, the current value set for option x, or NULL if the option is unset.

For Infusion.options(), a list of all set options. For Infusion.options(name), a list of length
one containing the set value, or NULL if it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

References

Mixmod Team (2016). Mixmod Statistical Documentation. Université de Franche-Comté, Be-
sançon, France. Version: February 10, 2016 retrieved from https://www.mixmod.org.

Examples

Infusion.options()
Infusion.getOption("LRthreshold")
Not run:
Infusion.options(LRthreshold=- qchisq(0.99,df=1)/2)

End(Not run)

https://www.mixmod.org

plot.SLik 39

plot.SLik Plot SLik or SLikp objects

Description

Mostly conceived for exposition purposes, for the two-parameters case. The black-filled points
are those for which the observed summary statistic was outside of the convex hull of the simulated
empirical distribution. The crosses mark the estimated ML point and the confidence intervals points,
that is, the outmost points on the contour defined by the profile likelihood threshold for the profile
confidence intervals. There is a pair of CI points for each interval. The smaller black dots mark
points added in the latest iteration, if refine was used.

Usage

S3 method for class 'SLik'
plot(x, y, filled = FALSE, decorations = NULL,

color.palette = NULL, plot.axes = NULL,
plot.title = NULL, plot.slices=TRUE, ...)

S3 method for class 'SLik_j'
plot(x, y, filled = nrow(x$logLs)>5000L, decorations = NULL,

color.palette = NULL, plot.axes = NULL,
plot.title = NULL, from_refine=FALSE, plot.slices=TRUE, ...)

Arguments

x An object of class SLik or SLikp

y Not used, but included for consistency with the plot generic.

filled whether to plot a mapMM or a filled.mapMM.

decorations Graphic directives added to the default decorations value in calls of mapMM or a
filled.mapMM (see the source code of plot.SLik for the latter default values).

color.palette Either NULL or a function that can replace the default color function used by
plot.SLik. The function must have a single argument, giving the number of
color levels.

plot.title statements which replace the default titles to the main plot (see Details).

plot.axes statements which replace the default axes on the main plot (see Details).

from_refine For programming purposes, not documented.

plot.slices boolean: whether to plot “slices” of the summary-likelihood surface for pairs
of parameters (p1,p2), when more than two parameters are fitted. In such plots
the additional parameters p3, p4... are fixed to their estimates [in contrast to
profile plots where p3, p4... take distinct values for each (p1,p2), maximizing
the function for each (p1,p2)].

... further arguments passed to or from other methods (currently can be used to pass
a few arguments such as map.asp in all cases, or variances to filled.mapMM).

40 plot1Dprof

Details

Different graphic functions are called depending on the number of estimated parameters. For two
parameters, mapMM or filled.mapMM are called. For more than two parameters, spaMM.filled.contour
is called. See the documentation of these functions for the appropriate format of the plot.title
and plot.axes arguments.

Value

Returns the plotted object invisibly.

Examples

Not run:
Using 'slik_j' object from the example in help("example_reftable")
plot(slik_j,filled=TRUE,

plot.title=quote(title("Summary-likelihood-ratio surface",
xlab=expression(mu),
ylab=expression(sigma^2))))

End(Not run)

plot1Dprof Plot likelihood profiles

Description

These functions plot 1D and 2D profiles from a summary-likelihood object.

High quality 2D plots may be slow to compute, and there may be many of them in high-dimensional
parameter spaces, so parallelization of the computation of each profile point has been implemented
for them. Usual caveats apply: there is an time cost of launching processes on a cluster, particu-
larly on socket clusters, possibly offsetting the benefits of parallelization when each profile point is
fast to evaluate. Further, summary-likelihood objects are typically big (memory-wise), which may
constrain the number of concurrent processes.

Usage

plot1Dprof(object, pars=object$colTypes$fittedPars, type="logLR",
gridSteps=21, xlabs=list(), ylab, scales=NULL,
plotpar=list(pch=20),
control=list(min=-7.568353, shadow_col="grey70"),
decorations = function(par) NULL, ...)

plot2Dprof(object, pars=object$colTypes$fittedPars, type="logLR",
gridSteps=17, xylabs=list(), main, scales=NULL,
plotpar=list(pch=20), margefrac = 0,
decorations = function(par1,par2) NULL,
filled.contour.fn = "spaMM.filled.contour",
cluster_args=NULL, ...)

plot1Dprof 41

Arguments

object An SLik or SLik_j object

pars Control of parameters for which profiles will be computed. If pars is specified
as a vector of names, profiles are plotted for each parameter, or (2D case) for
all pairs of distinct parameters. Finer control is possible in the 2D case (see
Details).

type Character: "logL" to plot the log-likelihood profile; "logLR" (or "LR" for the
not-log version) to plot the log-likelihood-ratio profile (the default); or "zoom"
or "dual" for variants of "logLR" (see details).

gridSteps The number of values (in each dimension for 2D plots) which likelihood should
be computed. For 1D plots, gridSteps=0 is now obsolete.

xlabs A list of alternative axis labels. The names of the list elements should be ele-
ments of pars (see Examples)

xylabs Same as xlabs but affecting both axes in 2D plots

ylab Same as ylab argument of plot. Default depends on type argument.

main Same as main argument of plot. Default depends on type argument.

scales A named character vector, which controls ticks and tick labels on axes, so that
these can be expressed as (say) the exponential of the parameter inferred in the
SLik object. For example if the likelihood of logPop = log(population size)
was thus inferred, scales=c(logPop="log") will give population size values
on the axis (but will retain a log scale for this parameter). Possible values of
each element of the vector are "identity" (default), "log", and "log10",

plotpar Arguments for par() such as font sizes, etc.

control Control of "zoom" or "dual" plots (see Details).

decorations A function with formals parameters as shown by the default (being parameters
names represented as character strings), implementing graphic directives added
to the plot.

margefrac For development purposes, not documented.
filled.contour.fn

Name of a possible alternative to graphics::filled.contour to be used for
rendering the plot.

cluster_args NULL, or a list in which case a cluster may be created and used. The list ele-
ments must match the arguments spec and type of parallel::makeCluster.
A socket cluster is created unless type="FORK" (on operating systems that sup-
port fork clusters).

... Further arguments passed by another function. Currently these arguments are
ignored.

Details

In the 2D case, the pars may be specified as a two-column natrix, in which case profiles are gen-
erated for all pairs of distinct parameters specified by rows of the matrix. It may also be specified
as a two-element list, where each element is a vector of parameter names. In that case, profiles are
generated for all pairs of distinct parameters combining one element of each vector.

42 plot1Dprof

A "zoom" plot shows only the top part of the profile, defined as points whose y-values are above a
threshold minus-log-likelihood ratio control$min, whose default is -7.568353, the 0.9999 p-value
threshold.

A "dual" plot displays both the zoom, and a shadow graph showing the full profile. The dual plot
is shown only when requested and if there are values above and below control$min. The shadow
curve color is given by control$shadow_col.

Value

Both functions return a list, which currently has a single element MSL_updated which is a boolean
indicating whether the summary-likelihood maximum (but not the intervals) has been recomputed.

Examples

if (Infusion.getOption("example_maxtime")>20) {
Toy bivariate gaussian model, three parameters, no projections
#
myrnorm2 <- function(mu1,mu2,s2,sample.size) {
sam1 <- rnorm(n=sample.size,mean=mu1,sd=sqrt(s2))
sam2 <- rnorm(n=sample.size,mean=mu2,sd=sqrt(s2))
s <- c(sam1,sam2)
e_mu <- mean(s)
e_s2 <- var(s)
c(mean=e_mu,var=e_s2,kurt=sum((s-e_mu)^4)/e_s2^2)

}
#
pseudo-sample, standing for the actual data to be analyzed:
set.seed(123)
Sobs <- myrnorm2(mu1=4,mu2=2,s2=1,sample.size=40) ##
#
build reference table
parsp <- init_reftable(lower=c(mu1=2.8,mu2=1,s2=0.2),

upper=c(mu1=5.2,mu2=3,s2=3),
nUnique=600)

parsp <- cbind(parsp,sample.size=40)
simuls <- add_reftable(Simulate="myrnorm2",par.grid=parsp)

Inferring the summary-likelihood surface...
densv <- infer_SLik_joint(simuls,stat.obs=Sobs)
slik_j <- MSL(densv) ## find the maximum of the log-likelihood surface

plots
plot2Dprof(slik_j,gridSteps=21,

alternative syntaxes for non-default 'pars':
pars = c("mu1","mu2"), # => all combinations of given elements
pars = list("s2",c("mu1","mu2")), # => combinations via expand.grid()
pars = matrix(c("mu1","mu2","s2","mu1"), ncol=2), # => each row of matrix
xylabs=list(

mu1=expression(paste(mu[1])),
mu2=expression(paste(mu[2])),
s2=expression(paste(sigma^2))

predict.SLik_j 43

))
One could also add (e.g.)
cluster_args=list(spec=4, type="FORK"),
when longer computations are requested.

}

if (Infusion.getOption("example_maxtime")>40) {
Older example with primitive workflow
data(densv)
slik <- infer_surface(densv) ## infer a log-likelihood surface
slik <- MSL(slik) ## find the maximum of the log-likelihood surface
plot1Dprof(slik,pars="s2",gridSteps=40,xlabs=list(s2=expression(paste(sigma^2))))

}

predict.SLik_j Evaluate log-likelihood for given parameters

Description

As the Title says. Implemented as a method of the predict generic, for objects created by the up-to-
date workflow using gaussian mixture modelling of a joint distribution of parameters and statistics
(hence the newdata argument, shared by many predict methods; but these newdata should be
parameter values, not data).

Usage

S3 method for class 'SLik_j'
predict(
object, newdata, log = TRUE, which = "lik",
tstat = t(attr(object$logLs, "stat.obs")),
solve_t_chol_sigma_lists = objectclu_paramssolve_t_chol_sigma_lists,
...)

Arguments

object an object of class SLik_j, as produced by infer_SLik_joint.
newdata A matrix, whose rows each contain a full vector of the fitted parameters; or a sin-

gle vector. If parameter names are not provided (as column names in the matrix
case), then the vector is assumed to be ordered as object$colTypes$fittedPars.

log Boolean: whether to return log-likelihood or likelihood.
which "lik" or "safe". The latter protects against some artefacts of predictions be-

yond the regions of parameter space well sampled by the inference procedure.
tstat The data (as projected summary statistics). Defaults to the data input in the

inference procedure (i.e., the projected statistics used as stat.obs argument of
infer_SLik_joint).

solve_t_chol_sigma_lists

For programming purposes. Do not change this argument.
... For consistency with the generic. Currently ignored.

44 profile.SLik

Value

Numeric: a single value, or a vector of (log-)likelihoods for different rows of the input newdata.

Examples

see help("example_reftable")

profile.SLik Compute profile summary likelihood

Description

Predicts the profile likelihood for a given parameter value (or vector of such values) using predic-
tions from an SLik object (as produced by MSL).

Usage

S3 method for class 'SLik'
profile(fitted, value, fixed=NULL, return.optim=FALSE,

init = "default", which="safe", ...)
S3 method for class 'SLik_j'
profile(fitted, ...)

Arguments

fitted an SLik object.

value The parameter value (as a vector of named values) for which the profile is to be
computed

fixed When this is NULL the computed interval is a profile confidence interval over all
parameters excluding value. fixed allows one to set fixed values to some of
these parameters.

return.optim If this is TRUE, and if maximization of likelihood given value and fixed is
indeed required, then the full result of the optimization call is returned.

... For SLik_j method, arguments passed to SLik method. For SLik_j method,
currently not used.

init Better ignored. Either a named vector of parameter values (initial value for some
optimizations) or a character string. The default is to call a procedure to find a
good initial point from a set of candidates. The source code should be consulted
for further details and is subject to change without notice.

which Better ignored (for development purpose).

Value

The predicted summary profile log-likelihood; or possibly the result of an optimization call if
return.optim is TRUE.

project.character 45

Examples

see main documentation page for the package

project.character Learn a projection method for statistics and apply it

Description

project is a generic function with two methods. If the first argument is a parameter name,
project.character (alias: get_projector) defines a projection function from several statistics to
an output statistic predicting this parameter. project.default (alias: get_projection) produces
a vector of projected statistics using such a projection. project is particularly useful to reduce
a large number of summary statistics to a vector of projected summary statistics, with as many
elements as parameters to infer. This dimension reduction can substantially speed up subsequent
computations. The concept implemented in project is to fit a parameter to the various statistics
available, using machine-learning or mixed-model prediction methods. All such methods can be
seen as nonlinear projection to a one-dimensional space. project.character is an interface that
allows different projection methods to be used, provided they return an object of a class that has a
defined predict method with a newdata argument (as expected, see predict).

plot_proj is a hastily written convenience function to plot a diagnostic plot for a projection from
an object of class SLik_j.

Usage

project(x,...)

S3 method for building the projection
S3 method for class 'character'
project(x, stats, data,

trainingsize= eval(Infusion.getOption("trainingsize")),
train_cP_size= eval(Infusion.getOption("train_cP_size")),
method, methodArgs=list(), verbose=TRUE,...)

get_projector(...) # alias for project.character

S3 method for applying the projection
Default S3 method:
project(x, projectors, use_oob=Infusion.getOption("use_oob"),

is_trainset=FALSE, methodArgs=list(), ...)
get_projection(...) # alias for project.default

plot_proj(object, parm, proj, xlab=parm, ylab=proj, ...)

46 project.character

Arguments

x The name of the parameter to be predicted, or a vector/matrix/list of matrices of
summary statistics.

stats Statistics from which the predictor is to be predicted

use_oob Boolean: whether to use out-of-bag predictions for data used in the training
set, when such oob predictions are available (i.e. for random forest methods).
Default as controlled by the same-named package option, is TRUE. This by
default involves a costly check on each row of the input x, whetehr it belongs
to the training set, so it is better to set it to FALSE if you are sure x does not
belong to the training set (for true data in particular). Alternatively the check
can be bypassed if you are sure that x was used as the training set.

is_trainset Boolean. Set it to TRUE if x was used as the training set, to bypass a costly
check (see use_oob argument).

data A list of simulated empirical distributions, as produced by add_simulation, or
a data frame with all required variables.

trainingsize, train_cP_size

Integers; for most projection methods (excluding "REML" but including "ranger")
only trainingsize is taken into account: it gives the maximum size of the
training set (and is infinite by default for "ranger" method). If the data have
more rows the training set is randomly sampled from it. For the "REML" method,
train_cP_size is the maximum size of the data used for estimation of smooth-
ing parameters, and trainingsize is the maximum size of the data from which
the predictor is built given the smoothing parameters.

method character string: "REML", "GCV", or the name of a suitable projection function.
The latter may be defined in another package, e.g. "ranger" or "randomForest",
or predefined by Infusion, or defined by the user. See Details for predefined
functions and for defining new ones. The default method is "ranger" if this
package is installed, and "REML" otherwise. Defaults may change in later ver-
sions, so it is advised to provide an explicit method to improve reproducibility.

methodArgs A list of arguments for the projection method. For project.character, the
ranger method is run with some default argument if no methodArgs are speci-
fied. Beware that a NULL methodArgs$splitrule is interpreted as the "extratrees"
splitrule, whereas in a direct call to ranger, this would be interpreted as the
"variance" splitrule. For project.default, the only methodArgs element
handled is num.threads passed to predict.ranger (which can also be con-
trolled globally by Infusion.options(nb_cores=.)).
For other methods, project kindly (tries to) assign values to the required argu-
ments if they are absent from methodArgs, according to the following rules:
If "REML" or "GCV" methods are used (in which case methodArgs is completely
ignored); or
if the projection method uses formula and data arguments (in particular if the
formula is of the form response ~ var1 + var2 + ...; otherwise the formula
should be provided through methodArgs). This works for example for methods
based on nnet; or

project.character 47

if the projection method uses x and y arguments. This works for example for the
(somewhat obsolete) method randomForest (though not with the generic func-
tion method="randomForest", but only with the internal function method="randomForest:::randomForest.default").

projectors A list with elements of the form <name>=<project result>, where the <name>
must differ from any name of x. <project result> may indeed be the return
object of a project call.

verbose Whether to print some information or not. In particular, TRUE, true-vs.-predicted
diagnostic plots will be drawn for projection methods “known” by Infusion (no-
tably "ranger", "fastai.tabular.learner.TabularLearner", "keras::keras.engine.training.Model",
"randomForest", "GCV", caret::train).

object An object of class SLik_j.

parm Character string: a parameter name.

proj Character string: name of projected statistic.

xlab,ylab Passed to plot.

... Further arguments passed to or from other functions. For plot_proj, they are
passed to plot.

Details

The preferred project method is non-parametric regression by (variants of) the random forest
method as implemented in ranger. It is the default method, if that package is installed. Alter-
native methods have been interfaced as detailed below, but the functionality of most interfaces is
infrequently tested.

By default, the ranger call through project will use the split rule "extratrees", with some other
controls also differing from the ranger package defaults. If the split rule "variance" is used, the
default value of mtry used in the call is also distinct from the ranger default, but consistent with
Breiman 2001 for regression tasks.

Machine learning methods such as random forests overfit, except if out-of-bag predictions are used.
When they are not, the bias is manifest in the fact that using the same simulation table for learning
the projectors and for other steps of the analyses tend to lead to too narrow confidence regions. This
bias disappears over iterations of refine when the projectors are kept constant. Infusion avoid
this bias by using out-of-bag predictions when relevant, when ranger and randomForest are used.
But it provides no code handling that problem for other machine-learning methods. Then, users
should cope with that problems, and at a minimum should not update projectors in every iteration
(the “Gentle Introduction to Infusion may contain further information about this problem”).

Prediction can be based on a linear mixed model (LMM) with autocorrelated random effects, inter-
nally calling the corrHLfit function with formula <parameter> ~ 1+ Matern(1|<stat1>+...+<statn>).
This approach allows in principle to produce arbitrarily complex predictors (given sufficient input)
and avoids overfitting in the same way as restricted likelihood methods avoids overfitting in LMM.
REML methods are then used by default to estimate the smoothing parameters. However, faster
methods are generally required.

To keep REML computation reasonably fast, the train_cP_size and trainingsize arguments
determine respectively the size of the subset used to estimate the smoothing parameters and the size
of the subset defining the predictor given the smoothing parameters. REML fitting is already slow
for data sets of this size (particularly as the number of predictor variables increase).

https://gitlab.mbb.univ-montp2.fr/francois/Infusion/-/blob/master/documents/InfusionIntro.pdf

48 project.character

If method="GCV", a generalized cross-validation procedure (Golub et al. 1979) is used to estimate
the smoothing parameters. This is faster but still slow, so a random subset of size trainingsize is
still used to estimate the smoothing parameters and generate the predictor.

Alternatively, various machine-learning methods can be used (see e.g. Hastie et al., 2009, for an
introduction). A random subset of size trainingsize is again used, with a larger default value
bearing the assumption that these methods are faster. Predefined methods include

• "ranger", the default, a computationally efficient implementation of random forest;

• "randomForest", the older default, probably obsolete now;

• "neuralNet", a neural network method, using the train function from the caret package
(probably obsolete too);

• "fastai" deep learning using the fastai package;

• "keras" deep learning using the keras package.

The last two interfaces may yet offer limited or undocumented control: using deep learning seems
attractive but the benefits over "ranger" are not clear (notably, the latter provide out-of-bag predic-
tions that avoid overfitting).

In principle, any object suitable for prediction could be used as one of the projectors, and
Infusion implements their usage so that in principle unforeseen projectors could be used. That is, if
predictions of a parameter can be performed using an object MyProjector of class MyProjectorClass,
MyProjector could be used in place of a project result if predict.MyProjectorClass(object,newdata,...)
is defined. However, there is no guarantee that this will work on unforeseen projection methods,
as each method tends to have some syntactic idiosyncrasies. For example, if the learning method
that generated the projector used a formula-data syntax, then its predict method is likely to re-
quest names for its newdata, that need to be provided through attr(MyProjector,"stats") (these
names cannot be assumed to be in the newdata when predict is called through optim).

Value

project.character returns an object of class returned by the method (methods "REML" and "GCV"
will call corrHLfit which returns an object of class spaMM) project.default returns an object
of the same class and structure as the input x, containing the projected statistics inferred from the
input summary statistics.

Note

See workflow examples in example_reftable and example_raw_proj.

References

Breiman, L. (2001). Random forests. Mach Learn, 45:5-32. <doi:10.1023/A:1010933404324>

Golub, G. H., Heath, M. and Wahba, G. (1979) Generalized Cross-Validation as a method for
choosing a good ridge parameter. Technometrics 21: 215-223.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, New York, 2nd edition, 2009.

refine 49

Examples

see Note for links to examples.

refine Refine estimates iteratively.

Description

This is a generic function with currently methods for SLik, SLik_j and SLikp objects (as produced
by MSL). Depending on the value of its newsimuls argument, and on whether the function used to
generate empirical distributions can be called by R, it (1) defines new parameters points and/or (2)
infers their summary likelihood or tail probabilities for each parameter point independently, adds
the inferred values results as input for refined inference of likelihood or P-value response surface,
and provides new point estimates and confidence intervals.

Usage

S3 method for class 'SLik'
refine(object, method=NULL, ...)

Default S3 method:
refine(object, surfaceData, Simulate =

attr(surfaceData,"Simulate"), maxit = 1, n = NULL,
useEI = list(max=TRUE,profileCI=TRUE,rawCI=FALSE),

newsimuls = NULL, trypoints=NULL, CIs = useCI, useCI = TRUE, level = 0.95,
verbose = list(most=interactive(),final=NULL,movie=FALSE,proj=FALSE),
precision = Infusion.getOption("precision"),
nb_cores = NULL, packages=attr(object$logLs,"packages"),
env=attr(object$logLs,"env"), method, using = object$using,
eval_RMSEs=TRUE, update_projectors = FALSE,
cluster_args=list(),
cl_seed=.update_seed(object),
nbCluster=quote(refine_nbCluster(nr=nrow(data))),
...)

Arguments

object an SLik or SLik_j object

surfaceData A data.frame with attributes, usually taken from the object and thus not speci-
fied by user, usable as input for infer_surface.

Simulate Character string: name of the function used to simulate samples. The only
meaningful non-default value is NULL, in which case refine may return (if
newsimuls is also NULL) a data frame of parameter points on which to run a
simulation function.

maxit Maximum number of iterative refinements (see also precision argument)

50 refine

n NULL or numeric, for a number of parameter points (excluding replicates and
confidence interval points in the primitive workflow), whose likelihood should
be computed (see n argument of sample_volume). This argument is typically
not heeded in the first refinement iteration (only one fifth as many points may
be produced), but will be closely approached in later ones (so four refinement
iterations with n=1000 is expected to produce 3200 new points). If n is left
NULL, the number of points of the initial reference table is used as a reference,
but with a somewhat different effect: four refinement iterations starting from a
reference table of 1000 ones iis expected to produce 4000 new points (though
again, possibly only 200 in the first refinement iteration).

useEI Cf this argument in rparam

newsimuls For the SLik_j method, a matrix or data frame, with the same parameters and
summary statistics as the data of the original infer_SLik_joint call.
For other methods, a list of simulation of distributions of summary statistics, in
the same format as for link{add_simulation}. If no such list is provided (i.e.,
if newsimuls remains NULL), the attr(object$logLs,"Simulate") function
is used (it is inherited from the Simulate argument of add_simulation through
the initial sequence of calls of functions add_simulation, infer_logLs or
infer_tailp, and infer_surface). If no such function is available, then this
function returns parameters for which new distribution should be provided by
the user.

trypoints A data frame of parameters on which the simulation function attr(object$logLs,"Simulate")
should be called to extend the reference table. Only for programming by expert
users, because poorly thought input trypoints could severely affect the infer-
ences.

CIs Boolean: whether to infer bounds of (one-dimensional, profile) confidence in-
tervals. Their computation is not quite reliable in parameter spaces of large
dimensions, so they should not be trusted per se, yet they may be useful for the
definition of new parameter points.

useCI whether to include parameter points near the inferred confidence interval points
in the set of points whose likelihood should be computed. Effective only if CIs
was TRUE.

level Intended coverage of confidence intervals

verbose A list as shown by the default, or simply a vector of booleans. verbose$most
controls whether to display information about progress and results, except plots;
$final controls whether to plot() the final object to show the final likeli-
hood surface. Default is to plot it only in an interactive session and if fewer
than three parameters are estimated; $movie controls whether to plot() the up-
dated object in each iteration; verbose$proj controls the verbose argument
of project.character. If verbose is an unnamed vector of booleans, they are
matched to as many elements from "most","movie","final","proj", in that
order.

precision Requested local precision of surface estimation, in terms of prediction standard
errors (RMSEs) of both the maximum summary log-likelihood and the likeli-
hood ratio at any CI bound available. Iterations will stop when either maxit is
reached, or if the RMSEs have been computed for the object (see eval_RMSEs

refine 51

argument) and this precision is reached for the RMSEs. A given precision on
the CI bounds themselves might seem more interesting, but is not well specified
by a single precision parameter if the parameters are on widely different scales.

nb_cores Shortcut for cluster_args$spec for sample simulation.

cluster_args A list of arguments for makeCluster, in addition to makeCluster’s spec argu-
ment which is in most cases best specified by the nb_cores argument. Cluster
arguments allow independent control of parallel computations for the different
steps of a refine iteration (see Details; as a rough but effective summary, use
only nb_cores when the simulations support it, and only cluster_args=list(project=list(num.threads=<.>))
when they do not).

packages NULL or a list with possible elements add_simulation and logL_method,
passed respectively as the packages arguments of add_simulation and infer_logLs,
wherein they are the additional packages to be loaded on child processes. The
default value keeps pre-refine values over iterations.

env An environment, passed as the env argument to add_simulation. The default
value keeps the pre-refine value over iterations.

using Passed to infer_SLik_joint: a charcter string used to control the joint-density
estimation method, as documented for that function. Default is to use to same
method as in the the first iteration, but this argument allows a change of method.

method (A vector of) suggested method(s) for estimation of smoothing parameters (see
method argument of infer_surface), and therefore controlling the primitive
workflow (see using instead for controlling the up-to-date workflow). The ith
element of the vector is used in the ith iteration, if available; otherwise the last
element is used. This argument is not always heeded, in that REML may be used
if the suggested method is GCV but it appears to perform poorly. The default
for SLikp and SLikp objects are "REML" and "PQL", respectively.

eval_RMSEs passed to MSL

update_projectors

Boolean; whether to update the projectors at each iteration.

cl_seed NULL or integer, passed to add_simulation. The default code uses an internal
function, .update_seed, to update it from a previous iteration.

nbCluster Passed to infer_SLik_joint. The data in the expression for the default value
refers to the data argument of the latter function.

... further arguments passed to or from other methods. refine passes these argu-
ments to the plot method suitable for the object.

Details

New parameter points are sampled as follows: the algorithm aims to sample uniformly the space
of parameters contained in the confidence regions defined by the level argument, and to surround
it by a region sampled proportionally to likelihood. In each iteration the algorithm aims to add as
many points (say n) as computed in the first iteration, so that after k iterations of refine, there
are n ∗ (k + 1) points in the simulation table. However, when not enough points satisfy certain
criteria, only n/5 points may be added in an iteration, this being compensated in further iterations.
For example, if n = 600, the table may include only 720 points after the first refine, but 1800 after
the second.

52 rparam

Independent control of parallelisation may be needed in the different steps, e.g. if the simula-
tions are not easily parallelised whereas the projection method natively handles parallelisation. In
the up-to-date workflow with default ranger projection method, prarallelisation controls may be
passed to add_reftable for sample simulations, to project methods when projections are updated,
and to MSL for RMSE computations (alternatively for the primitive workflow, add_simulation,
infer_logLs and MSL are called). nb_cores, if given and not overcome by other options, will
control simulation and projection steps (but not RMSE computation): nb_cores gives the number
of parallel processes for sample simulation, with additional makeCluster arguments taken from
cluster_args, but RMSE computations are performed serially. Further independent control is
possible as follows:
cluster_args=list(project=list(num.threads=<.>)) allows control of the num.threads ar-
gument of ranger functions;
cluster_args=list(RMSE=list(spec=<number of 'children'>)) can be used to force parallel
computation of RMSEs;
cluster_args=list(spec=<.>, <other makeCluster arguments>)) would instead apply the same
arguments to both reference table and RMSE computation, overcoming the default effect of nb_cores
in both of them; finally
cluster_args=list(reftable=list(<makeCluster arguments>),RMSEs=list(<makeCluster
arguments>)) allows full independent control of parallelisation for the two computations.

Value

refine returns an updated SLik or SLik_j object.

Note

See workflow examples in (by order of decreasing relevance) example_reftable, example_raw_proj
and example_raw.

Examples

see Note for links to examples.

rparam Sample the parameter space

Description

These functions take an SLik object (as produced by MSL) and samples its parameter space in (hope-
fully) clever ways, not yet well documented. rparam calls sample_volume to define points targeting
the likelihood maximum and the bounds of confidence intervals, with n for these different targets
dependent on the mean square error of prediction of likelihood at the maximum and at CI bounds.

rparam 53

Usage

rparam(object, n= 1, useEI = list(max=TRUE,profileCI=TRUE,rawCI=FALSE),
useCI = TRUE, verbose = interactive(), tryn=30*n,
level = 0.95, CIweight=Infusion.getOption("CIweight"))

sample_volume(object, n = 6, useEI, vertices=NULL,
dlr = NULL, verbose = interactive(),
fixed = NULL, tryn= 30*n)

Arguments

object an SLik or SLik_j object

n The number of parameter points to be produced

useEI List of booleans, each determining whether to use an “expected improvement”
(EI) criterion (e.g. Bingham et al., 2014) to select candidate parameter points
to better ascertain a particular focal point. The elements max, profileCI and
rawCI determine this for three types of focal points, respectively the MSL es-
timate, profile CI bounds, and full-dimensional bounds. When EI is used, n
points with best EI are selected among tryn points randomly generated in some
neighborhood of the focal point.

vertices Points are sampled within a convex hull defined by vertices. By default, these
vertices are taken from objectfitdata.

useCI Whether to define points targeting the bounds of confidence intervals for the
parameters. An expected improvement criterion is also used here.

level If useCI is TRUE but confidence intervals are not available from the object, such
intervals are computed with coverage level.

dlr A (log)likelihood ratio threshold used to select points in the upper region of the
likelihood surface. Default value is given by Infusion.getOption("LRthreshold")

verbose Whether to display some information about selection of points, or not

fixed A list or named vector, of which each element is of the form <parameter
name>=<value>, defining a one-dimensional constraint in parameter space. Points
will be sampled in the intersection of the volume defined by the object and of
such constraint(s).

tryn See useEI argument.

CIweight For development purposes, not documented.

Value

a data frame of parameter points. Only parameters variable in the SLik object are considered.

References

D. Bingham, P. Ranjan, and W.J. Welch (2014) Design of Computer Experiments for Optimization,
Estimation of Function Contours, and Related Objectives, pp. 109-124 in Statistics in Action: A
Canadian Outlook (J.F. Lawless, ed.). Chapman and Hall/CRC.

54 summLik

Examples

if (Infusion.getOption("example_maxtime")>10) {
data(densv)
summliksurf <- infer_surface(densv) ## infer a log-likelihood surface
sample_volume(summliksurf)

}

summLik Model density evaluation for given data and parameters

Description

Evaluation of inferred probability density as function of parameters and of (projected) summary
statistics is implemented as a generic function summLik. Given the (projected) statistics for the data
used to build the SLik_j object, and the fitted parameters, this returns the (log)likelihood as the
generic logLik extractor. However, parameters can be varied (providing the likelihood function),
and the data too.

This documentation deals mostly with the method for objects of class SLik_j produced by the
up-to-date version of the summary-likelihood workflow.

Usage

summLik(object, parm, data, ...)

S3 method for class 'SLik_j'
S3 method for class 'SLik_j'
summLik(object, parm, data=t(attr(object$logLs,"stat.obs")),

log=TRUE, which="lik", ...)

Arguments

object An SLik or SLik_j object

parm data frame or matrix, containing coordinates of parameter points for which (log)
likelihoods will be computed

data The (projected, if relevant) summary statistics for which the likelihood of given
parameters is to be computed. By default, the (projected) statistics for the data
used to build the SLik_j object

log Boolean: whether to return log likelihood or raw likelihood. Better ignored.

which character string: "lik" for (log) likelihood inferred directly from the gaussian
mixture model for joint parameters and summary statistics. But "safe", which
deals with a possible problem of this direct computation (see Details), is used
internally by Infusion in all maximizations of likelihood.

... further arguments passed to or from other methods.

write_workflow 55

Details

An object of class SLik_j contains a simulated joint distribution of parameters and (projected)
summary statistics, and a fit of a multivariate gaussian mixture model to this simulated distribution,
the “jointdens”, from which a marginal density “margpardens” of parameters can be deduced. The
raw likelihood(P;D) is the probability of the data D given the parameters P, viewed as function the
parameters and for fixed data. It is inferred as jointdens(D,P)/margpardens(P) (for different P, each
of jointdens and margdens are probabilities from a single (multivariate) gaussian mixture model,
but this is not so for their ratio).

When margdens(P) is low, indicating that the region of parameter space around P has been poorly
sampled in the simulation step, inference of likelihood is unreliable. Spuriously high likelihood
may be inferred, which results notably in poor inference based on likelihood ratios. For this rea-
son, it is often better to use the argument which="safe" whereby the likelihood is penalized when
margdens(P) is low. The penalization is of the form
penalized= unpenalized * pmin(1,margpardens/object$thr_dpar), where thr_dpar is a marginal
density threshold stored in the SLik_j object. The source code should be consulted for details, and
is subject to changes without notice.

Value

Numeric vector

See Also

logLik.

Examples

Not run:
Using 'slik_j' object from the example in help("example_reftable")
summLik(slik_j, parm=slik_jMSLMSLE+0.1)

summLik() generalizes logLik():
summLik(slik_j, parm=slik_jMSLMSLE) == logLik(slik_j) # must be TRUE

End(Not run)

write_workflow Workflow template

Description

codewrite_workflow writes a workflow script for inference. Beyond possibly saving some typing,
this suggests what may be a reasonably good starting workflow. One should not expect to control
all options of the workflow through the write_workflow arguments.

Usage

write_workflow(con = stdout(), lower, upper, nUnique, Simulate, simulator_args=NULL, ...)

56 write_workflow

Arguments

con A connection object or a character string. Passed to writeLines.

lower A named numeric vector of lower bounds for parameter space.

upper A named numeric vector of upper bounds for parameter space.

nUnique Number of simulations of the process (i.e. of rows of the reference table) in the
first iteration.

Simulate Function, or function name as a string. Sets the same-named add_reftable
argument.

simulator_args list of arguments for the simulator. Sets the . . . in the add_reftable call.

... Sets additional arguments in the refine call.

Value

No return value. Used for the side-effect text, written to the connection.

Examples

write_workflow(
arguments for init_reftable():
lower=c(logTh1=-2,logTh2=-2,logTh3=-2,logTh4=-2,ar=0.01,logMu=-5,MEANP=0.01),
upper=c(logTh1=1, logTh2=1, logTh3=1, logTh4=1, ar=0.99,logMu=-2,MEANP=0.99),
nUnique = 1000,
#
for add_reftable():
Simulate="schtroumf", # name of a user-defined R function

simulator_args= list(# Imagine that schtroumf() require arguments 'exe_path' and 'cmdline':
exe_path="'path_to_smurf_executable'",
cmdline="'smurf.exe -a -b -c -d'"

), # Do check the quotation marks in the output...
#
optional arguments for refine():
n=8000/3.2, CIs=TRUE, update_projectors=FALSE)

Index

∗ datasets
densv, 10

∗ package
Infusion, 32

add_reftable, 2, 5
add_simulation, 3, 5, 24, 28, 37, 46, 50

boundaries-attribute (handling_NAs), 26

check_raw_stats, 9
class:dMixmod (dMixmod), 11
class:NULLorChar (dMixmod), 11
class:NULLorNum (dMixmod), 11
confint (confint.SLik), 9
confint.SLik, 9
corrHLfit, 32, 47, 48

densb (densv), 10
densv, 10
dMixmod, 11
dMixmod-class (dMixmod), 11
dopar, 20

example_raw, 12, 32, 52
example_raw_proj, 13, 32, 48, 52
example_reftable, 14, 16, 32, 48, 52
extractors, 16

filled.mapMM, 39, 40
focal_refine, 17

get_from, 17, 18, 35
get_LRboot, 19
get_nbCluster_range, 22
get_projection (project.character), 45
get_projector (project.character), 45
goftest, 24, 38

handling_NAs, 26, 32
HLfit, 28, 31

infer_logL_by_GLMM (infer_logLs), 27
infer_logL_by_Hlscv.diag (infer_logLs),

27
infer_logL_by_mclust (infer_logLs), 27
infer_logL_by_Rmixmod (infer_logLs), 27
infer_logLs, 11, 27, 31, 37
infer_SLik_joint, 29, 34, 43, 50, 51
infer_surface, 31, 49, 51
infer_surface.logLs, 34
infer_tailp, 31
infer_tailp (infer_logLs), 27
Infusion, 11, 29, 32
Infusion-package (Infusion), 32
Infusion.getOption (options), 37
Infusion.options, 7, 23
Infusion.options (options), 37
init_grid (init_reftable), 33
init_reftable, 33

logLik, 19, 55
logLik (extractors), 16

makeCluster, 4, 6, 28, 35, 51
mapMM, 39, 40
MSL, 9, 34, 44, 49, 51, 52
multi_binning, 36

NA_handling (handling_NAs), 26
neuralNet (project.character), 45
NULLorChar (dMixmod), 11
NULLorChar-class (dMixmod), 11
NULLorNum (dMixmod), 11
NULLorNum-class (dMixmod), 11

options, 37

parallel (options), 37
plot, 47
plot.dMixmod (dMixmod), 11
plot.SLik, 29, 39
plot.SLik_j (plot.SLik), 39

57

58 INDEX

plot.SLikp (plot.SLik), 39
plot1Dprof, 40
plot2Dprof (plot1Dprof), 40
plot_proj (project.character), 45
predict, 35, 45
predict.SLik_j, 35, 43
print (extractors), 16
profile (profile.SLik), 44
profile.SLik, 44
project, 11
project (project.character), 45
project.character, 37, 45, 50

refine, 4, 23, 24, 29, 35, 37, 47, 49
refine_nbCluster (get_nbCluster_range),

22
rparam, 50, 52

sample_volume, 37, 50
sample_volume (rparam), 52
saved_seed (densv), 10
seq_nbCluster (get_nbCluster_range), 22
SLRT (get_LRboot), 19
spaMM.filled.contour, 40
summary (extractors), 16
summLik, 17, 54

write_workflow, 55
writeLines, 56

	add_reftable
	add_simulation
	check_raw_stats
	confint.SLik
	densv
	dMixmod
	example_raw
	example_raw_proj
	example_reftable
	extractors
	focal_refine
	get_from
	get_LRboot
	get_nbCluster_range
	goftest
	handling_NAs
	infer_logLs
	infer_SLik_joint
	infer_surface
	Infusion
	init_reftable
	MSL
	multi_binning
	options
	plot.SLik
	plot1Dprof
	predict.SLik_j
	profile.SLik
	project.character
	refine
	rparam
	summLik
	write_workflow
	Index

