
An Introduction to the GPLTR package

Cyprien Mbogning
Inserm UNIT 1178, France

March 28, 2024

Contents

1 Introduction 1

2 GPLTR model 2

3 Fitting methods 2

4 Illustration via several examples 3

5 Compute the generalization error of the procedure 12

6 Test the joint effect of the selected tree while adjusting for confounders. 13

7 Bagging a set of PLTR models 14

1 Introduction

This document is intended to give a short overview of the methods found in the GPLTR

package. The acronym GPLTR is designed for — Generalized Partially Linear Tree-based
Regression model —.

The GPLTR programs build classification or regression models of a very general structure
using a three stage procedure with several additional tools (see (Mbogning et al. 2014)); the
resulting model is an hybrid model combining a generalized linear model with an additional
tree part on the same scale. The model was first proposed by (Chen et al. 2007) for genetic
epidemiology studies in order to assess complex joint gene-gene and gene-environment effects
taking into account confounding variables. In practice, the GPLTR models represent a new
class of semi-parametric regression models that integrates the advantages of generalized
linear regression and tree-structure models. To our best knowledge, there is currently no

1

implemented package dealing with this kind of model. The available classical tree-based
methods do not provide a way for controlling confounding factors outside the tree part (the
final tree is generally a mixture of confounders and explanatory variables lacking of clear
interpretation and resulting in a distorted joint effect).

We also proposed an ensemble method (see (Mbogning et al. 2015)), mainly the bagging,
to address a classical concern of tree-based methods, their instability. the Bagged GPLTR
is proposed with several scores of variable importance for prediction and variable selection
in the framework of the GPLTR model.

2 GPLTR model

Denote Y the outcome of interest, X a set of confounding variables, and G the explanatory
variables. The model fitted inside the GPLTR package is specified by:

g (E (Y|X,G)) = X′θ + βTF (T (G)) , (1)

where g(·) is a known link function (generalized linear model), F (T (Z)) is a vector of
indicator variables representing the leaves of the tree T (G).

The variables considered in the linear part (confounding variables or variables we wish
to control) of the model (1) have a direct impact on the structure of the tree, beginning by
the split criterion and ending by the pruning procedure.

3 Fitting methods

The method we used in this package to fit the model (1) can be summarized into three
major steps:

Step1 Fit the linear part and build a maximal tree within an iterative procedure by playing
on several offsets terms. The nodes of the tree are splitted by maximizing a deviance
criterion, while an intercept coefficient is fitted inside the node using the corresponding
glm with the linear part considered as offset.

Step2 In order to prune back the maximal tree obtained previously, we use a forward
procedure to build a sequence of nested subtrees.

Step3 The optimal tree is selected, using either a BIC criterion, a AIC criterion, a K-fold
Cross-validation procedure on the underlying GPLTR models corresponding to the
nested trees sequence. The original parametric bootstrap test procedure proposed by
Chen et al. is also available.

2

We further propose a procedure to test the joint effect of the selected tree while adjusting
for confounders. The users are encouraged to read the recent paper of (Mbogning et al.
2014) for a more thorough explanation about the model and the methods.

Table (1) represents a brief summary of the main functions available inside the GPLTR

package. A more complete description is available inside the package documentation.

Table 1: Main function in the GPLTR package
Function Description

pltr.glm Fit an unprunned pltr model

best.tree.BIC.AIC Prunned back the unprunned pltr with a BIC or AIC criterion

best.tree.CV Prunned back the unprunned pltr with a CV procedure

best.tree.bootstrap prunned back the unprunned pltr with a parametric bootstrap procedure

p.val.tree Test the joint effect of the selected tree part while adjusting for confounders

bagging.pltr Aggregate a set of pltr models

predict bagg.pltr Predict new features with bagging pltr predictor

VIMPBAG compute several variable importance score with the bagging pltr predictor

4 Illustration via several examples

In the following, we will present the results obtained on the publicly available ”burn” Data
Set (Times to Infection for Burn Patients from the book of Klein and Moeschberger (Klein
and Moeschberger 2003)). This dataset comes from a study (Ichida et al. 1993) that
evaluates a protocol change in disinfectant practices for a cohort of 154 patients. A complete
description of the data is also available inside the GPLTR package documentation.

In this example, the dependent variable is the administration of prophylactic antibiotic
treatment (D2: yes/no), the confounding variable is the gender (Z2: male/female) and
the potential explanatory variables are: ethnicity, severity of the burn as measured by
percentage of total surface area of body burned, burn site (head, buttocks, trunk, upper
legs, lower legs, respiratory tract), and type of burn (chemical, scald, electric, flame). In
this analysis, we included gender as a confounding factor since this factor has already been
described as related to infections among burn patients (Wisplinghoff et al. 1999). Such

3

adjustment for confounders cannot be performed within the classical CART framework.

Results obtained with the classical CART algorithm

First of all, we have fitted a classical tree model on the dependent variable D2, using the
CART algorithm (Breiman et al. 1984) via the ’rpart’ routines (Therneau and Atkinson
2013) of the R software:

> data(burn)

> head(burn, n = 10)

Obs Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 T1 D1 T2 D2 T3 D3

1 1 0 0 0 15 0 0 1 1 0 0 2 12 0 12 0 12 0

2 2 0 0 1 20 0 0 1 0 0 0 4 9 0 9 0 9 0

3 3 0 0 1 15 0 0 0 1 1 0 2 13 0 13 0 7 1

4 4 0 0 0 20 1 0 1 0 0 0 2 11 1 29 0 29 0

5 5 0 0 1 70 1 1 1 1 0 0 2 28 1 31 0 4 1

6 6 0 0 1 20 1 0 1 0 0 0 4 11 0 11 0 8 1

7 7 0 0 1 5 0 0 0 0 0 1 4 12 0 12 0 11 1

8 8 0 0 1 30 1 0 1 1 0 0 4 8 1 34 0 4 1

9 9 0 0 1 25 0 1 0 1 1 0 4 10 1 53 0 4 1

10 10 0 0 1 20 0 1 0 1 0 0 4 7 0 1 1 7 0

> rpart.burn <- rpart(D2 ~ Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9

+ Z10 + Z11, data = burn, method = "class")

> print(rpart.burn)

n= 154

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 154 63 0 (0.5909091 0.4090909)

2) Z4< 16.5 67 17 0 (0.7462687 0.2537313) *

3) Z4>=16.5 87 41 1 (0.4712644 0.5287356)

6) Z10< 0.5 52 21 0 (0.5961538 0.4038462)

12) Z2< 0.5 41 13 0 (0.6829268 0.3170732)

24) Z5>=0.5 18 3 0 (0.8333333 0.1666667) *

25) Z5< 0.5 23 10 0 (0.5652174 0.4347826)

50) Z6< 0.5 11 3 0 (0.7272727 0.2727273) *

51) Z6>=0.5 12 5 1 (0.4166667 0.5833333) *

13) Z2>=0.5 11 3 1 (0.2727273 0.7272727) *

7) Z10>=0.5 35 10 1 (0.2857143 0.7142857) *

4

|
Z4< 16.5

Z10< 0.5

Z2< 0.5

Z5>=0.5

Z6< 0.5

0
50/17

0
15/3

0
8/3

1
5/7

1
3/8

1
10/25

Figure 1: Tree obtained on the burn dataset with rpart.

> #par(mar = rep(0.1, 4))

>

> plot(rpart.burn)

> text(rpart.burn, xpd = TRUE, cex = .6, use.n = TRUE)

Figure (1) represents the tree obtained using the classical CART algorithm.
The tree is built by the following process: first the single variable is found which best

splits the data into two groups (via the Gini index in the example). The data is separated,
and then this process is applied separately to each sub-group, and so on recursively until
the subgroups either reach a minimum size or until no improvement can be made.

Results obtained with our proposed method within the GPLTR package

A logistic partially linear tree-based regression model is fitted by using our proposed
method:

5

> ## use example(GPLTR) to have a brief overview of the contain of the package.

>

> ## fit the PLTR model after adjusting on gender (Z2) using the proposed method

> ## ?GPLTR or ?pltr.glm to access the help section

>

> ## setting the parameters

>

> args.rpart <- list(minbucket = 10, maxdepth = 4, cp = 0,

maxcompete = 0, maxsurrogate = 0)

> family <- "binomial"

> X.names = "Z2"

> Y.name = "D2"

> G.names = c('Z1','Z3','Z4','Z5','Z6','Z7','Z8','Z9','Z10','Z11')

> ## Build the maximal tree with an adjustment on gender (Z2)

>

> pltr.burn <- pltr.glm(burn, Y.name, X.names, G.names, args.rpart =

args.rpart, family = family,iterMax =8, iterMin = 6,

verbose = TRUE)

Iteration process...

Iteration 1 in PLTR; Diff_norm_gamma = 0.3450989

Iteration 2 in PLTR; Diff_norm_gamma = 0.1035102

Iteration 3 in PLTR; Diff_norm_gamma = 0.1555209

Iteration 4 in PLTR; Diff_norm_gamma = 0.04005871

Iteration 5 in PLTR; Diff_norm_gamma = 0.01202298

Iteration 6 in PLTR; Diff_norm_gamma = 0.003612611

Iteration 7 in PLTR; Diff_norm_gamma = 0.001085865

Iteration 8 in PLTR; Diff_norm_gamma = 0.0003264183

End of iteration process

Number of iterations: 8

> ## Prunned back the maximal tree using either the BIC or the AIC criterion

>

> pltr.burn_prun <- best.tree.BIC.AIC(xtree = pltr.burn$tree, burn, Y.name,

X.names, family = family, verbose = FALSE)

> ## Summary of the selected tree by a BIC criterion

>

> summary(pltr.burn_prun$tree$BIC)

Call:

rpart(formula = as.formula(paste(Y.name, " ~ ", paste(G.names,

6

collapse = " + "), paste("+ offset(offsetX)"))), data = eval(parse(text = paste("data.frame(data, offsetX = as.matrix(data[,X.names])",

product, "hat_gamma)"))), method = method, control = args.rpart)

n= 154

CP nsplit rel error

1 0.0604978419 0 1.0000000

2 0.0408578707 1 0.9395022

3 0.0318009580 2 0.8986443

4 0.0261741219 3 0.8668433

5 0.0147618258 5 0.8144951

6 0.0073443205 6 0.7997333

7 0.0025318226 7 0.7923889

8 0.0002897679 8 0.7898571

9 0.0000000000 9 0.7895673

Variable importance

Z1 Z4 Z10 Z6 Z5

36 30 19 11 3

Node number 1: 154 observations, complexity param=0.06049784

events = 63, coef = -0.6005625, deviance = 202.69720

left son=2 (64 obs) right son=3 (90 obs)

Primary splits:

Z4 < 15.5 to the left, improve=12.26274, (0 missing)

Node number 2: 64 observations, complexity param=0.03180096

events = 16, coef = -1.3621820, deviance = 71.21259

left son=4 (25 obs) right son=5 (39 obs)

Primary splits:

Z1 < 0.5 to the left, improve=6.445964, (0 missing)

Node number 3: 90 observations, complexity param=0.04085787

events = 47, coef = -0.1251768, deviance = 119.22180

left son=6 (55 obs) right son=7 (35 obs)

Primary splits:

Z10 < 0.5 to the left, improve=8.281774, (0 missing)

Node number 4: 25 observations

events = 2, coef = -2.6717880, deviance = 14.89458

7

Node number 5: 39 observations

events = 14, coef = -0.8618721, deviance = 49.87204

Node number 6: 55 observations, complexity param=0.02617412

events = 22, coef = -0.6175948, deviance = 68.93242

left son=12 (37 obs) right son=13 (18 obs)

Primary splits:

Z6 < 0.5 to the left, improve=4.886466, (0 missing)

Node number 7: 35 observations

events = 25, coef = 0.6995323, deviance = 42.00763

Node number 12: 37 observations, complexity param=0.02617412

events = 11, coef = -1.0794600, deviance = 42.43535

left son=24 (20 obs) right son=25 (17 obs)

Primary splits:

Z1 < 0.5 to the left, improve=5.724374, (0 missing)

Node number 13: 18 observations

events = 11, coef = 0.2519882, deviance = 21.61060

Node number 24: 20 observations

events = 3, coef = -2.0596390, deviance = 14.90882

Node number 25: 17 observations

events = 8, coef = -0.2338515, deviance = 21.80216

> ## Summary of the final selected pltr model

>

> summary(pltr.burn_prunfit_glmBIC)

Call:

glm(formula = xformula, family = family, data = xdata)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9830 -0.8274 -0.3593 0.9052 2.3547

Coefficients:

Estimate

(Intercept) 0.6805

8

Z2 1.1349

as.integer(Z4 < 15.5 & Z1 < 0.5) -3.3883

as.integer(Z4 < 15.5 & Z1 >= 0.5) -1.5766

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 < 0.5) -2.7869

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 >= 0.5) -0.9263

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 >= 0.5) -0.4475

Std. Error

(Intercept) 0.3882

Z2 0.4686

as.integer(Z4 < 15.5 & Z1 < 0.5) 0.8405

as.integer(Z4 < 15.5 & Z1 >= 0.5) 0.5175

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 < 0.5) 0.7534

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 >= 0.5) 0.6241

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 >= 0.5) 0.6238

z value

(Intercept) 1.753

Z2 2.422

as.integer(Z4 < 15.5 & Z1 < 0.5) -4.031

as.integer(Z4 < 15.5 & Z1 >= 0.5) -3.047

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 < 0.5) -3.699

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 >= 0.5) -1.484

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 >= 0.5) -0.717

Pr(>|z|)

(Intercept) 0.079594

Z2 0.015445

as.integer(Z4 < 15.5 & Z1 < 0.5) 5.54e-05

as.integer(Z4 < 15.5 & Z1 >= 0.5) 0.002315

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 < 0.5) 0.000217

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 >= 0.5) 0.137707

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 >= 0.5) 0.473180

(Intercept) .

Z2 *

as.integer(Z4 < 15.5 & Z1 < 0.5) ***

as.integer(Z4 < 15.5 & Z1 >= 0.5) **

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 < 0.5) ***

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 < 0.5 & Z1 >= 0.5)

as.integer(Z4 >= 15.5 & Z10 < 0.5 & Z6 >= 0.5)

Signif. codes:

9

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 208.37 on 153 degrees of freedom

Residual deviance: 165.03 on 147 degrees of freedom

AIC: 179.03

Number of Fisher Scoring iterations: 5

> ## Plot the maximal tree and the BIC prunned tree

>

> par(mfrow = c(2,1))

> plot(pltr.burn$tree, main = '', margin = 0.05)

> text(pltr.burn$tree, xpd = TRUE, cex = .4, col = 'blue')

> plot(pltr.burn_prun$tree$BIC, branch = .5, main = '', margin = 0.05)

> text(pltr.burn_prun$tree$BIC, xpd = TRUE, cex = .4, col = 'blue')

� The underlying method behind the ’binomial’ family above is a new one, different
from those implemented inside the rpart package. The splitting criterion is based
on a logistic deviance criterion considering the linear part as offset (Mbogning et al.
2014).

� The child nodes of node x are always 2x and 2x + 1, to help in navigating the tree
summary (compare the summary to the bottom figure 2).

� They are many Items in the tree summary list:

– the complexity table

– the variable importance

– the node number

– the number of cases within the node

– the number of events (number of cases with attribute 1) inside the node

– the logistic intercept coefficient fitted inside the node, which represents the sum-
mary statistic of the node. This coefficient represents the predicted value of the
node. that’s the main difference with a conventional tree where the predicted
value is the modal class of the node.

– the logistic deviance of the previous model inside the node which is used as the
splitting criterion

10

|
Z4< 15.5

Z1< 0.5

Z11>=3.5 Z5>=0.5

Z4>=9.5

Z10< 0.5

Z6< 0.5

Z1< 0.5

Z1< 0.5
0.06667

−2.83600
0.10000

−2.47400 0.16670
−1.60900

0.37500
−0.85080

0.54550
−0.26640

0.15000
−2.06000

0.47060
−0.23390

0.61110
 0.25200

0.58820
 0.08282

0.83330
 1.43900

|
Z4< 15.5

Z1< 0.5 Z10< 0.5

Z6< 0.5

Z1< 0.5

0.0800
−2.6720

0.3590
−0.8619

0.1500
−2.0600

0.4706
−0.2339

0.6111
 0.2520

0.7143
 0.6995

Figure 2: The figure on the top is the maximal tree obtained with pltr.glm; the figure on
the bottom is a pruned tree via a BIC criterion

11

� * indicates that the node is terminal.

� the first split is on the Percentage of total surface area burned (Z4). 64 individuals
with Z4 < 15.5 go to the left while the remaining 90 go to the right. The split with
the maximum number of events is always on the right.

� The improvement listed is the change in deviance for the split, ie., D(parent) −
(D(leftson) + D(rightson)), where D is the deviance operator. This is similar to a
likelihood ratio test statistic.

� the other nodes can be described similarly.

For all the two models (tree with rpart (Fig 1) and the tree with our proposed procedure
(Fig 2)), the first split is due to the percentage of total surface area burned ((< 16.5%, >
16.5%) for rpart and (< 15.5%, > 15.5%) for the proposed method). The subsequent splits
are different between patients having a high or low percentage of total surface area burned.
The classical rpart model shows only one split whereas our proposed PLTR model shows
two splits. With the exception of CART model where no split occurs, the subsequent split
for the group of patients with a low percentage of area burned is due to the initial treatment
(routine bathing/body cleansing). For high percentage of surface area burned, the split for
the two models is due to the respiratory tract damage. Our proposed procedure identifies
other splits due to the treatment and the buttock burns. In particular, we observed that
the group of patients with a high percentage of surface area of body burned, without tract
respiratory damage, buttock injury and without routine bathing shows a lower proportion of
prophylactic antibiotics administration. This group is not detected by the original PLTR
method. It is worth noting that the confounding factor Z2 is significant with a higher
proportion of prophylactic antibiotics administration among women.

The particularity of the PLTR model is that in addition with the tree part, the final
model is a classical logistic model with new risk factors emerging from the tree part. The
summary of the final logistic model is presented within the R code above. We can see for
example that the new risk factor constituted by individuals sharing the attributes Z4 < 15.5
and Z1 < 0.5 is highly significant (although naively due to randomness) w.r.t the reference
leaf. Similar interpretation can be made for other factors.

5 Compute the generalization error of the procedure

We can further compute the generalization error of the procedure. This can be computed
via the function best.tree.CV which can also provide the best tree based on a K-fold
cross-validation procedure.

12

> set.seed(150)

> pltr.burn_CV <- best.tree.CV(pltr.burn$tree, burn, Y.name, X.names,

G.names, family = family, args.rpart = args.rpart,

epsi = 0.001, iterMax = 15, iterMin = 8, ncv = 10,

verbose = FALSE)

Max tree size 10 reached

Max tree size 10 reached

Max tree size 10 reached

> pltr.burn_CV$CV_ERROR

[[1]]

[1] 0.3515789

[[2]]

[1] 0.3729825 0.3649123 0.3677193 0.3810526 0.3810526

[6] 0.3624561 0.3663158 0.3515789 0.3649123

> Bic_size <- sum(pltr.burn_prun$tree$BIC$frame$var == '<leaf>')

> ## Bic_size <- tree_select$best_index[[1]]

>

> CV_ERROR_BIC <- pltr.burn_CV$CV_ERROR[[2]][Bic_size]

> CV_ERROR_BIC

[1] 0.3624561

The generalization error of the procedure using the BIC criterion is computed as pre-
sented in the previous r code.

6 Test the joint effect of the selected tree while adjusting for
confounders.

We can also test the joint effect of the selected tree after adjusting for the confounding
variable

> ## Use only one worker on a window plateform.

>

> args.parallel = list(numWorkers = 10, type = "PSOCK")

> index = Bic_size

> p_value <- p.val.tree(xtree = fit_pltr$tree, data_pltr, Y.name, X.names,

G.names, B = 1000, args.rpart = args.rpart, epsi = 1e-3,

iterMax = 15, iterMin = 8, family = family, LB = FALSE,

13

args.parallel = args.parallel, index = index, verbose =

FALSE)

> p_value$P.value

7 Bagging a set of PLTR models

The high variability of the tree within the PLTR model can result in an unstable selected
model. An ensemble method such as Bagging can stabilize the predictor. The user are
encouraged to read the paper of (Mbogning et al. 2015) for a more thorough explanation
about the procedure.

A flowchart of the bagging procedure related to the PLTR model is as follow:

An

A∗1n A∗2n A∗Bn

Bootstrap

PLTR

pltr1 pltr2 pltrB

BagPLTR

14

> ## ?bagging.pltr

> set.seed(250)

> Bag.burn <- bagging.pltr(burn, Y.name, X.names, G.names, family,

args.rpart,epsi = 0.01, iterMax = 4, iterMin = 3,

Bag = 20, verbose = FALSE, doprune = FALSE)

ncores = 1 for bagging trees !

> ## The thresshold values used

>

> Bag.burn$CUT

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> ##The set of PLTR models in the bagging procedure

>

> PLTR_BAG.burn <- Bag.burn$Glm_BAG

> ##The set of trees in the bagging procedure

>

> TREE_BAG.burn <- Bag.burn$Tree_BAG

> ## Look for the variability of trees in the bagging sequence

>

> par(mfrow = c(3,2))

> plot(TREE_BAG.burn[[1]], branch = .5, main = '', margin = 0.05)

> text(TREE_BAG.burn[[1]], xpd = TRUE, cex = .6)

> plot(TREE_BAG.burn[[2]], branch = .5, main = '', margin = 0.05)

> text(TREE_BAG.burn[[2]], xpd = TRUE, cex = .6)

> plot(TREE_BAG.burn[[3]], branch = .5, main = '', margin = 0.05)

> text(TREE_BAG.burn[[3]], xpd = TRUE, cex = .6)

> plot(TREE_BAG.burn[[4]], branch = .5, main = '', margin = 0.05)

> text(TREE_BAG.burn[[4]], xpd = TRUE, cex = .6)

> plot(TREE_BAG.burn[[5]], branch = .5, main = '', margin = 0.05)

> text(TREE_BAG.burn[[5]], xpd = TRUE, cex = .6)

> plot(TREE_BAG.burn[[6]], branch = .5, main = '', margin = 0.05)

> text(TREE_BAG.burn[[6]], xpd = TRUE, cex = .6)

Prediction using the bagged pltr predictor

> ## Use the bagging procedure to predict new features

> # ?predict_bagg.pltr

>

15

|
Z4< 17

Z3>=0.5
Z4< 7.5

Z4>=11

Z1< 0.5

Z10< 0.5
Z4< 31.5

Z4>=23

Z4< 37.5
0.00000

−25.9800
0.18520
 −1.9180

0.31580
 −1.2140

0.45450
 −0.7159

0.07692
 −2.8460

0.80000
 0.6684

0.64710
 0.1772

0.42860
 −0.4914

0.88240
 1.8550

1.00000
 25.1400

|
Z4< 15.5

Z1< 0.5

Z4< 6.5 Z5>=0.5
Z11>=3.5

Z10< 0.5

Z5>=0.5

Z4>=22.5

Z5< 0.5

Z4< 35.50.00000
−24.74000

0.08333
 −2.47200

0.14290
 −1.79200 0.29170

 −1.04600
0.63640

 0.13500 0.14290
 −1.87300

0.25000
 −1.29200

0.80000
 1.27100

0.53850
 −0.05171

0.80000
 1.07700

0.92860
 2.31800

|
Z4< 33.5

Z4>=23

Z8>=0.5 Z4< 19.5

Z4>=9.5 Z1< 0.5

Z8< 0.5
Z4< 60

0.00000
−25.640000

0.08333
 −2.583000

0.08696
 −2.475000

0.47830
 −0.171600

0.58330
 0.258700

0.93750
 2.577000

0.54550
 0.008148

0.90000
 1.977000

0.90000
 2.070000

|
Z4< 39

Z1< 0.5

Z4< 19.5
Z10>=0.5 Z10< 0.5

Z4>=21

Z4< 16.5

Z6< 0.5

0.00000
−25.1200

0.18750
 −1.7530 0.11760

 −2.3950
0.70000
 0.0742

0.06667
 −2.7640

0.36590
 −0.8924

0.76920
 0.7533

0.46150
 −0.4227

0.88240
 1.9220

|
Z6< 0.5

Z1< 0.5

Z10< 0.5

Z8< 0.5

Z4< 14

Z9< 0.5 Z4>=21.5

Z4< 39

Z5>=0.5

0.03226
−3.7740

0.18180
−1.8010

0.47370
−0.4237

0.07143
−2.9550

0.30770
−0.8109

0.33330
−0.9222

0.66670
 0.6406

0.46150
−0.6345 0.83330

 1.2140
1.00000
24.1700

|
Z6< 0.5

Z1< 0.5

Z4< 19.5

Z5< 0.5

Z4< 12.5

Z4>=15.5

Z4< 39

0.0000
−25.6700

0.1333
 −2.4120

0.2500
 −1.3540 0.1500

 −2.0580
0.4828

 −0.2483
0.6154
 0.3496

0.5000
 −0.2153

0.8667
 1.7840

Figure 3: set of the first 6 trees within the bagging predictor: The trees seem to fluctuate
with the sample considered during the resampling step.

16

> Pred_Bag.burn <- predict_bagg.pltr(Bag.burn, Y.name, newdata = burn,

type = "response", thresshold = seq(0, 1, by = 0.1))

> ## The confusion matrix for each thresshold value using the majority vote

>

> Pred_Bag.burn$CONF1

$CUT1

Observed Class

Predicted Class 0 1

1 91 63

$CUT2

Observed Class

Predicted Class 0 1

0 25 2

1 66 61

$CUT3

Observed Class

Predicted Class 0 1

0 46 5

1 45 58

$CUT4

Observed Class

Predicted Class 0 1

0 64 12

1 27 51

$CUT5

Observed Class

Predicted Class 0 1

0 73 17

1 18 46

$CUT6

Observed Class

Predicted Class 0 1

0 80 23

1 11 40

17

$CUT7

Observed Class

Predicted Class 0 1

0 85 29

1 6 34

$CUT8

Observed Class

Predicted Class 0 1

0 90 42

1 1 21

$CUT9

Observed Class

Predicted Class 0 1

0 91 50

1 0 13

$CUT10

Observed Class

Predicted Class 0 1

0 91 58

1 0 5

$CUT11

Observed Class

Predicted Class 0 1

0 91 63

> ## The prediction error for each thresshold value

>

> Pred_err.burn <- Pred_Bag.burn$PRED_ERROR1

> Pred_err.burn

CUT1 CUT2 CUT3 CUT4 CUT5 CUT6

0.5909091 0.4415584 0.3246753 0.2532468 0.2272727 0.2207792

CUT7 CUT8 CUT9 CUT10 CUT11

0.2272727 0.2792208 0.3246753 0.3766234 0.4090909

18

Compute the variable importances of the bagging procedure

Several scores for variable importance are proposed (Mbogning et al. 2015). Among them,

� the Permutation Importance Score (PIS)

� the Deviance Importance Score (DIS)

� the Depth Deviance Importance Score (DDIS)

� the minimal depth score

> Var_Imp_BAG.burn <- VIMPBAG(Bag.burn, burn, Y.name)

> ## Importance score using the permutaion method for each thresshold value

>

> Var_Imp_BAG.burn$PIS

$CUT1

Z1 Z10 Z3 Z4 Z11 Z5 Z8 Z6 Z9 Z7

0 0 0 0 0 0 0 0 0 0

$CUT2

Z4 Z1 Z5 Z8

2.788966e-02 2.090240e-02 9.517687e-03 5.133742e-03

Z6 Z7 Z10 Z9

2.358582e-03 2.037037e-03 2.689759e-04 3.189793e-05

Z11 Z3

0.000000e+00 -8.771930e-04

$CUT3

Z4 Z10 Z1 Z5

0.026877860 0.020940838 0.019406565 0.008261934

Z8 Z6 Z11 Z7

0.003409091 0.003267673 0.001851852 0.001111111

Z3 Z9

-0.001941023 -0.002695375

$CUT4

Z4 Z10 Z1 Z7

0.0437317845 0.0392967484 0.0219625674 0.0011111111

Z11 Z6 Z3 Z5

0.0009259259 -0.0009794021 -0.0010638298 -0.0022891915

19

Z8 Z9

-0.0052707419 -0.0069326629

$CUT5

Z4 Z10 Z1 Z7

0.0519408698 0.0392416639 0.0244296635 0.0011111111

Z11 Z3 Z6 Z9

0.0009259259 0.0000000000 -0.0010499164 -0.0042372881

Z5 Z8

-0.0069388398 -0.0079342188

$CUT6

Z4 Z10 Z1 Z3

4.985325e-02 3.589607e-02 1.864394e-02 0.000000e+00

Z11 Z7 Z6 Z9

0.000000e+00 0.000000e+00 -2.950828e-05 -4.237288e-03

Z8 Z5

-5.390359e-03 -6.841374e-03

$CUT7

Z4 Z1 Z10 Z6

0.0520975343 0.0297708966 0.0275468122 0.0027884544

Z11 Z3 Z9 Z7

0.0009259259 0.0000000000 0.0000000000 0.0000000000

Z5 Z8

-0.0049744591 -0.0053606238

$CUT8

Z4 Z10 Z1 Z6

0.0459021521 0.0246276658 0.0217340742 0.0120744814

Z5 Z3 Z11 Z9

0.0002339181 0.0000000000 0.0000000000 0.0000000000

Z7 Z8

0.0000000000 -0.0045131662

$CUT9

Z4 Z10 Z1 Z6

3.901072e-02 2.246424e-02 1.354892e-02 1.046158e-02

Z5 Z3 Z11 Z9

2.507531e-04 0.000000e+00 0.000000e+00 0.000000e+00

20

Z7 Z8

0.000000e+00 -2.973536e-05

$CUT10

Z4 Z10 Z1 Z6

2.297724e-02 1.031475e-02 9.293793e-03 7.450489e-03

Z5 Z3 Z11 Z9

2.507531e-04 0.000000e+00 0.000000e+00 0.000000e+00

Z7 Z8

0.000000e+00 -2.973536e-05

$CUT11

Z1 Z10 Z3 Z4 Z11 Z5 Z8 Z6 Z9 Z7

0 0 0 0 0 0 0 0 0 0

> par(mfrow=c(1,3))

> barplot(Var_Imp_BAG.burnPISCUT5, main = 'PIS', horiz = TRUE, las = 1,

cex.names = .8, col = 'lightblue')

> barplot(Var_Imp_BAG.burn$DIS, main = 'DIS', horiz = TRUE, las = 1,

cex.names = .8, col = 'grey')

> barplot(Var_Imp_BAG.burn$DDIS, main = 'DDIS', horiz = TRUE, las = 1,

cex.names = .8, col = 'purple')

compute the AUC of the Bagged predictor based on OOB
samples

> auc_BAG_oob <- bag.aucoob(Bag.burn, burn, Y.name)

> ## AUC of the predictor on OOB samples

>

> auc_BAG_oob$AUCOOB

[1] 0.6735566

> ## Plot the ROC curve of the predictor based on OOB samples

>

> par(mfrow=c(1, 1))

> plot(auc_BAG_oobFPR, auc_BAG_oobTPR, type = 'b', lty = 3, col = 'blue',

xlab = 'false positive rate', ylab = 'true positive rate')

> legend(0.7, 0.3, sprintf('%3.3f', auc_BAG_oob$AUCOOB), lty = c(1, 1),

lwd = c(2.5, 2.5), col = 'blue', title = 'AUC')

21

Z4

Z10

Z1

Z7

Z11

Z3

Z6

Z9

Z5

Z8

PIS

0.00 0.01 0.02 0.03 0.04 0.05

Z4

Z1

Z10

Z6

Z8

Z5

Z9

Z11

Z7

Z3

DIS

0 10 20 30 40 50

Z4

Z1

Z6

Z10

Z8

Z5

Z3

Z9

Z11

Z7

DDIS

0 10 20 30 40 50 60 70

Figure 4: Variable importances using the bagging procedure on the burn dataset: The
permutation importance score (PIS on the left), the deviance importance score (DIS on the
middle) and the depth deviance importance score (DDIS on the right).

22

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

AUC

0.674

Figure 5: Roc curve with AUC of the Bagged predictor using OOB samples.

23

References

Breiman, L., J. H. Olshen, and C. J. Stone (1984). Classification and Regression Trees.
Belmont, California: Wadsworth International Group.

Chen, J., K. Yu, A. Hsing, and T. M. Therneau (2007). A partially linear tree-based
regression model for assessing complex joint gene-gene and gene-environment effects.
Genetic Epidemiology 31, 238–251.

Ichida, J. M., J. T. Wassell, M. D. Keller, and L. W. Ayers (1993). Evaluation of Protocol
Change in Burn-Care Management Using the Cox Proportional Hazards Model with
Time-Dependent Covariates. Statistics in Medicine 12, 301–310.

Klein, J. P. and M. L. Moeschberger (2003). SURVIVAL ANALYSIS Techniques for
Censored and Truncated Data (second ed.). New York: Springer.

Mbogning, C., H. Perdry, and P. Broët (2015). A bagged partially linear tree-based
regression procedure for prediction and variable selection. Human Heredity 79 (1),
82–93.

Mbogning, C., H. Perdry, W. Toussile, and P. Broët (2014). A novel tree-based procedure
for deciphering the genomic spectrum of clinical disease entities. Journal of Clinical
Bioinformatics 4 (6).

Therneau, T. M. and E. J. Atkinson (2013). An introduction to recursive partitioning
using the RPART routines. Mayo Foundation.

Wisplinghoff, H., W. Perbix, and H. Seifert (1999). Risk Factors for Nosocomial Blood-
stream Infections Due to Acinetobacter baumannii: A Case-Control Study of Adult
Burn Patients. Clin. Infect. Dis. 28 (1), 59–66.

24

	Introduction
	GPLTR model
	Fitting methods
	Illustration via several examples
	Compute the generalization error of the procedure
	Test the joint effect of the selected tree while adjusting for confounders.
	Bagging a set of PLTR models

