Title: | Functional Neural Networks |
Version: | 1.0 |
Description: | A collection of functions which fit functional neural network models. In other words, this package will allow users to build deep learning models that have either functional or scalar responses paired with functional and scalar covariates. We implement the theoretical discussion found in Thind, Multani and Cao (2020) <doi:10.48550/arXiv.2006.09590> through the help of a main fitting and prediction function as well as a number of helper functions to assist with cross-validation, tuning, and the display of estimated functional weights. |
Imports: | keras, tensorflow, fda.usc, fda, ggplot2, ggpubr, caret, pbapply, reshape2, flux, doParallel, foreach, Matrix |
URL: | https://arxiv.org/abs/2006.09590, https://github.com/b-thi/FuncNN |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.0 |
Suggests: | knitr, rmarkdown |
NeedsCompilation: | no |
Packaged: | 2020-09-07 23:52:53 UTC; Richard |
Author: | Richard Groenewald [ctb], Barinder Thind [aut, cre, cph], Jiguo Cao [aut], Sidi Wu [ctb] |
Maintainer: | Barinder Thind <barinder.thi@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2020-09-15 09:40:15 UTC |
FuncNN: Functional Neural Networks
Description
A collection of functions which fit functional neural network models. In other words, this package will allow users to build deep learning models that have either functional or scalar responses paired with functional and scalar covariates. We implement the theoretical discussion found in Thind, Multani and Cao (2020) <arXiv:2006.09590> through the help of a main fitting and prediction function as well as a number of helper functions to assist with cross-validation, tuning, and the display of estimated functional weights.
Author(s)
Maintainer: Barinder Thind barinder.thi@gmail.com [copyright holder]
Authors:
Jiguo Cao
Other contributors:
Richard Groenewald [contributor]
Sidi Wu [contributor]
References
Thind, B., Multani, K., and Cao J. (2020) “Deep Learning with Functional Inputs”, https://arxiv.org/abs/2006.09590
See Also
Useful links:
Classic Canadian weather data set.
Description
Classic Canadian weather data set.
Usage
data(daily)
Format
An object containing temperature and precipitation data for 35 Canadian cities.
References
Ramsay, J., Hooker, G. and Graves, S. (2009) "Functional Data Analysis with R and MATLAB", Springer-Verlag, New York, ISBN: 9780387981857
Functional Neural Networks with Cross-validation
Description
This is a convenience function for the user. The inputs are largely the same as the fnn.fit()
function with the
additional parameter of fold choice. This function only works for scalar responses.
Usage
fnn.cv(
nfolds,
resp,
func_cov,
scalar_cov = NULL,
basis_choice = c("fourier"),
num_basis = c(7),
hidden_layers = 2,
neurons_per_layer = c(64, 64),
activations_in_layers = c("sigmoid", "linear"),
domain_range = list(c(0, 1)),
epochs = 100,
loss_choice = "mse",
metric_choice = list("mean_squared_error"),
val_split = 0.2,
learn_rate = 0.001,
patience_param = 15,
early_stopping = TRUE,
print_info = TRUE,
batch_size = 32,
decay_rate = 0,
func_resp_method = 1,
covariate_scaling = TRUE,
raw_data = FALSE
)
Arguments
nfolds |
The number of folds to be used in the cross-validation process. |
resp |
For scalar responses, this is a vector of the observed dependent variable. For functional responses, this is a matrix where each row contains the basis coefficients defining the functional response (for each observation). |
func_cov |
The form of this depends on whether the |
scalar_cov |
A matrix contained the multivariate information associated with the data set. This is all of your non-longitudinal data. |
basis_choice |
A vector of size k (the number of functional covariates) with either "fourier" or "bspline" as the inputs. This is the choice for the basis functions used for the functional weight expansion. If you only specify one, with k > 1, then the argument will repeat that choice for all k functional covariates. |
num_basis |
A vector of size k defining the number of basis functions to be used in the basis expansion. Must be odd
for |
The number of hidden layers to be used in the neural network. | |
neurons_per_layer |
Vector of size = |
activations_in_layers |
Vector of size = |
domain_range |
List of size k. Each element of the list is a 2-dimensional vector containing the upper and lower bounds of the k-th functional weight. |
epochs |
The number of training iterations. |
loss_choice |
This parameter defines the loss function used in the learning process. |
metric_choice |
This parameter defines the printed out error metric. |
val_split |
A parameter that decides the percentage split of the inputted data set. |
learn_rate |
Hyperparameter that defines how quickly you move in the direction of the gradient. |
patience_param |
A keras parameter that decides how many additional |
early_stopping |
If TRUE, then learning process will be halted early if error improvement isn't seen. |
print_info |
If TRUE, function will output information about the model as it is trained. |
batch_size |
Size of the batch for stochastic gradient descent. |
decay_rate |
A modification to the learning rate that decreases the learning rate as more and more learning iterations are completed. |
func_resp_method |
Set to 1 by default. In the future, this will be set to 2 for an alternative functional response approach. |
covariate_scaling |
If TRUE, then data will be internally scaled before model development. |
raw_data |
If TRUE, then user does not need to create functional observations beforehand. The function will internally take care of that pre-processing. |
Details
No additional details for now.
Value
The following are returned.
predicted_folds
– The predicted scalar values in each fold.
true_folds
– The true values of the response in each fold.
MSPE
– A list object containing the MSPE in each fold and the overall cross-validated MSPE.
fold_indices
– The generated indices for each fold; for replication purposes.
Examples
# Libraries
library(fda)
# Loading data
data("daily")
# Creating functional data
nbasis = 65
temp_data = array(dim = c(nbasis, 35, 1))
tempbasis65 = create.fourier.basis(c(0,365), nbasis)
tempbasis7 = create.bspline.basis(c(0,365), 7, norder = 4)
timepts = seq(1, 365, 1)
temp_fd = Data2fd(timepts, daily$tempav, tempbasis65)
prec_fd = Data2fd(timepts, daily$precav, tempbasis7)
prec_fd$coefs = scale(prec_fd$coefs)
# Data set up
temp_data[,,1] = temp_fd$coefs
resp_mat = prec_fd$coefs
# Non functional covariate
weather_scalar = data.frame(total_prec = apply(daily$precav, 2, sum))
# Setting up data to pass in to function
weather_data_full <- array(dim = c(nbasis, ncol(temp_data), 1))
weather_data_full[,,1] = temp_data
scalar_full = data.frame(weather_scalar[,1])
total_prec = apply(daily$precav, 2, mean)
# cross-validating
cv_example <- fnn.cv(nfolds = 5,
resp = total_prec,
func_cov = weather_data_full,
scalar_cov = scalar_full,
domain_range = list(c(1, 365)),
learn_rate = 0.001)
Fitting Functional Neural Networks
Description
This is the main function in the FuncNN
package. This function fits models of the form: f(z, b(x)) where
z are the scalar covariates and b(x) are the functional covariates. The form of f() is that of a neural network
with a generalized input space.
Usage
fnn.fit(
resp,
func_cov,
scalar_cov = NULL,
basis_choice = c("fourier"),
num_basis = c(7),
hidden_layers = 2,
neurons_per_layer = c(64, 64),
activations_in_layers = c("sigmoid", "linear"),
domain_range = list(c(0, 1)),
epochs = 100,
loss_choice = "mse",
metric_choice = list("mean_squared_error"),
val_split = 0.2,
learn_rate = 0.001,
patience_param = 15,
early_stopping = TRUE,
print_info = TRUE,
batch_size = 32,
decay_rate = 0,
func_resp_method = 1,
covariate_scaling = TRUE,
raw_data = FALSE,
dropout = FALSE
)
Arguments
resp |
For scalar responses, this is a vector of the observed dependent variable. For functional responses, this is a matrix where each row contains the basis coefficients defining the functional response (for each observation). |
func_cov |
The form of this depends on whether the |
scalar_cov |
A matrix contained the multivariate information associated with the data set. This is all of your non-longitudinal data. |
basis_choice |
A vector of size k (the number of functional covariates) with either "fourier" or "bspline" as the inputs. This is the choice for the basis functions used for the functional weight expansion. If you only specify one, with k > 1, then the argument will repeat that choice for all k functional covariates. |
num_basis |
A vector of size k defining the number of basis functions to be used in the basis expansion. Must be odd
for |
The number of hidden layers to be used in the neural network. | |
neurons_per_layer |
Vector of size = |
activations_in_layers |
Vector of size = |
domain_range |
List of size k. Each element of the list is a 2-dimensional vector containing the upper and lower bounds of the k-th functional weight. |
epochs |
The number of training iterations. |
loss_choice |
This parameter defines the loss function used in the learning process. |
metric_choice |
This parameter defines the printed out error metric. |
val_split |
A parameter that decides the percentage split of the inputted data set. |
learn_rate |
Hyperparameter that defines how quickly you move in the direction of the gradient. |
patience_param |
A keras parameter that decides how many additional |
early_stopping |
If TRUE, then learning process will be halted early if error improvement isn't seen. |
print_info |
If TRUE, function will output information about the model as it is trained. |
batch_size |
Size of the batch for stochastic gradient descent. |
decay_rate |
A modification to the learning rate that decreases the learning rate as more and more learning iterations are completed. |
func_resp_method |
Set to 1 by default. In the future, this will be set to 2 for an alternative functional response approach. |
covariate_scaling |
If TRUE, then data will be internally scaled before model development. |
raw_data |
If TRUE, then user does not need to create functional observations beforehand. The function will internally take care of that pre-processing. |
dropout |
Keras parameter that randomly drops some percentage of the neurons in a given layer. If TRUE, then 0.1*layer_number will be dropped; instead, you can specify a vector equal to the number of layers specifying what percentage to drop in each layer. |
Details
Updates coming soon.
Value
The following are returned:
model
– Full keras model that can be used with any functions that act on keras models.
data
– Adjust data set after scaling and appending of scalar covariates.
fnc_basis_num
– A return of the original input; describes the number of functions used in each of the k basis expansions.
fnc_type
– A return of the original input; describes the basis expansion used to make the functional weights.
parameter_info
– Information associated with hyperparameter choices in the model.
per_iter_info
– Change in error over training iterations
func_obs
– In the case when raw_data
is TRUE
, the user may want to see the internally developed functional observations.
This returns those functions.
Examples
# First, an easy example with raw_data = TRUE
# Loading in data
data("daily")
# Functional covariates (subsetting for time sake)
precip = t(daily$precav)
longtidunal_dat = list(precip)
# Scalar Response
total_prec = apply(daily$precav, 2, mean)
# Running model
fit1 = fnn.fit(resp = total_prec,
func_cov = longtidunal_dat,
scalar_cov = NULL,
learn_rate = 0.0001,
epochs = 10,
raw_data = TRUE)
# Classification Example with raw_data = TRUE
# Loading data
tecator = FuncNN::tecator
# Making classification bins
tecator_resp = as.factor(ifelse(tecator$y$Fat > 25, 1, 0))
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Splitting data
ind = sample(1:length(tecator_resp), round(0.75*length(tecator_resp)))
train_y = tecator_resp[ind]
test_y = tecator_resp[-ind]
train_x = tecator$absorp.fdata$data[ind,]
test_x = tecator$absorp.fdata$data[-ind,]
scalar_train = data.frame(tecator_scalar[ind,1])
scalar_test = data.frame(tecator_scalar[-ind,1])
# Making list element to pass in
func_covs_train = list(train_x)
func_covs_test = list(test_x)
# Now running model
fit_class = fnn.fit(resp = train_y,
func_cov = func_covs_train,
scalar_cov = scalar_train,
hidden_layers = 6,
neurons_per_layer = c(24, 24, 24, 24, 24, 58),
activations_in_layers = c("relu", "relu", "relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050)),
learn_rate = 0.001,
epochs = 100,
raw_data = TRUE,
early_stopping = TRUE)
# Running prediction, gets probabilities
predict_class = fnn.predict(fit_class,
func_cov = func_covs_test,
scalar_cov = scalar_test,
domain_range = list(c(850, 1050)),
raw_data = TRUE)
# Example with Pre-Processing (raw_data = FALSE)
# loading data
tecator = FuncNN::tecator
# libraries
library(fda)
# define the time points on which the functional predictor is observed.
timepts = tecator$absorp.fdata$argvals
# define the fourier basis
nbasis = 29
spline_basis = create.fourier.basis(tecator$absorp.fdata$rangeval, nbasis)
# convert the functional predictor into a fda object and getting deriv
tecator_fd = Data2fd(timepts, t(tecator$absorp.fdata$data), spline_basis)
tecator_deriv = deriv.fd(tecator_fd)
tecator_deriv2 = deriv.fd(tecator_deriv)
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Response
tecator_resp = tecator$y$Fat
# Getting data into right format
tecator_data = array(dim = c(nbasis, length(tecator_resp), 3))
tecator_data[,,1] = tecator_fd$coefs
tecator_data[,,2] = tecator_deriv$coefs
tecator_data[,,3] = tecator_deriv2$coefs
# Splitting into test and train for third FNN
ind = 1:165
tec_data_train <- array(dim = c(nbasis, length(ind), 3))
tec_data_test <- array(dim = c(nbasis, nrow(tecator$absorp.fdata$data) - length(ind), 3))
tec_data_train = tecator_data[, ind, ]
tec_data_test = tecator_data[, -ind, ]
tecResp_train = tecator_resp[ind]
tecResp_test = tecator_resp[-ind]
scalar_train = data.frame(tecator_scalar[ind,1])
scalar_test = data.frame(tecator_scalar[-ind,1])
# Setting up network
tecator_fnn = fnn.fit(resp = tecResp_train,
func_cov = tec_data_train,
scalar_cov = scalar_train,
basis_choice = c("fourier", "fourier", "fourier"),
num_basis = c(5, 5, 7),
hidden_layers = 4,
neurons_per_layer = c(64, 64, 64, 64),
activations_in_layers = c("relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050), c(850, 1050), c(850, 1050)),
epochs = 300,
learn_rate = 0.002)
# Prediction example can be seen with ?fnn.fit()
# Functional Response Example:
# libraries
library(fda)
# Loading data
data("daily")
# Creating functional data
temp_data = array(dim = c(65, 35, 1))
tempbasis65 = create.fourier.basis(c(0,365), 65)
tempbasis7 = create.bspline.basis(c(0,365), 7, norder = 4)
timepts = seq(1, 365, 1)
temp_fd = Data2fd(timepts, daily$tempav, tempbasis65)
prec_fd = Data2fd(timepts, daily$precav, tempbasis7)
prec_fd$coefs = scale(prec_fd$coefs)
# Data set up
temp_data[,,1] = temp_fd$coefs
resp_mat = prec_fd$coefs
# Non functional covariate
weather_scalar = data.frame(total_prec = apply(daily$precav, 2, sum))
# Getting data into proper format
ind = 1:30
nbasis = 65
weather_data_train <- array(dim = c(nbasis, ncol(temp_data), 1))
weather_data_train[,,1] = temp_data
scalar_train = data.frame(weather_scalar[,1])
resp_train = t(resp_mat)
# Running model
weather_func_fnn <- fnn.fit(resp = resp_train,
func_cov = weather_data_train,
scalar_cov = scalar_train,
basis_choice = c("bspline"),
num_basis = c(7),
hidden_layers = 2,
neurons_per_layer = c(1024, 1024),
activations_in_layers = c("sigmoid", "linear"),
domain_range = list(c(1, 365)),
epochs = 300,
learn_rate = 0.01,
func_resp_method = 1)
Output of Estimated Functional Weights
Description
This function outputs plots and ggplot()
objects of the functional weights found by the fnn.fit()
model.
Usage
fnn.fnc(model, domain_range, covariate_scaling = FALSE)
Arguments
model |
A keras model as outputted by |
domain_range |
List of size k. Each element of the list is a 2-dimensional vector containing the upper and lower
bounds of the k-th functional weight. Must be the same covariates as input into |
covariate_scaling |
If TRUE, then data will be internally scaled before model development. |
Details
No additional details for now.
Value
The following are returned:
FNC_Coefficients
– The estimated coefficients defining the basis expansion for each of the k functional weights.
saved_plot
– A list of size k of ggplot()
objects.
Examples
# libraries
library(fda)
# loading data
tecator = FuncNN::tecator
# define the time points on which the functional predictor is observed.
timepts = tecator$absorp.fdata$argvals
# define the fourier basis
nbasis = 29
spline_basis = create.fourier.basis(tecator$absorp.fdata$rangeval, nbasis)
# convert the functional predictor into a fda object and getting deriv
tecator_fd = Data2fd(timepts, t(tecator$absorp.fdata$data), spline_basis)
tecator_deriv = deriv.fd(tecator_fd)
tecator_deriv2 = deriv.fd(tecator_deriv)
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Response
tecator_resp = tecator$y$Fat
# Getting data into right format
tecator_data = array(dim = c(nbasis, length(tecator_resp), 3))
tecator_data[,,1] = tecator_fd$coefs
tecator_data[,,2] = tecator_deriv$coefs
tecator_data[,,3] = tecator_deriv2$coefs
# Getting data ready to pass into function
ind = 1:165
tec_data_train <- array(dim = c(nbasis, length(ind), 3))
tec_data_train = tecator_data[, ind, ]
tecResp_train = tecator_resp[ind]
scalar_train = data.frame(tecator_scalar[ind,1])
# Setting up network
tecator_fnn = fnn.fit(resp = tecResp_train,
func_cov = tec_data_train,
scalar_cov = scalar_train,
basis_choice = c("fourier", "fourier", "fourier"),
num_basis = c(5, 5, 7),
hidden_layers = 4,
neurons_per_layer = c(64, 64, 64, 64),
activations_in_layers = c("relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050), c(850, 1050), c(850, 1050)),
epochs = 300,
learn_rate = 0.002)
# Functional weights for this model
est_func_weights = fnn.fnc(tecator_fnn, domain_range = list(c(850, 1050),
c(850, 1050),
c(850, 1050)))
Plotting Functional Response Predictions
Description
This function is to be used for functional responses. It outputs a ggplot()
object of the predicted functional responses.
Usage
fnn.plot(
FNN_Predict_Object,
Basis_Type = "fourier",
domain_range = c(0, 1),
step_size = 0.01
)
Arguments
FNN_Predict_Object |
An object output by the |
Basis_Type |
The type of basis to use to create the functional response. |
domain_range |
The continuum range of the functional responses. |
step_size |
The size of the movement from the lower bound of the |
Details
No additional details for now.
Value
The following are returned:
plot
– A ggplot()
object of the predicted functional responses.
evaluations
– The discrete evaluations across the domain of the functional response.
Examples
# libraries
library(fda)
# Loading data
data("daily")
# Creating functional data
temp_data = array(dim = c(65, 35, 1))
tempbasis65 = create.fourier.basis(c(0,365), 65)
tempbasis7 = create.bspline.basis(c(0,365), 7, norder = 4)
timepts = seq(1, 365, 1)
temp_fd = Data2fd(timepts, daily$tempav, tempbasis65)
prec_fd = Data2fd(timepts, daily$precav, tempbasis7)
prec_fd$coefs = scale(prec_fd$coefs)
# Data set up
temp_data[,,1] = temp_fd$coefs
resp_mat = prec_fd$coefs
# Non functional covariate
weather_scalar = data.frame(total_prec = apply(daily$precav, 2, sum))
# Splitting into test and train
ind = 1:30
nbasis = 65
weather_data_train <- array(dim = c(nbasis, length(ind), 1))
weather_data_test <- array(dim = c(nbasis, ncol(daily$tempav) - length(ind), 1))
weather_data_train[,,1] = temp_data[, ind, ]
weather_data_test[,,1] = temp_data[, -ind, ]
scalar_train = data.frame(weather_scalar[ind,1])
scalar_test = data.frame(weather_scalar[-ind,1])
resp_train = t(resp_mat[,ind])
resp_test = t(resp_mat[,-ind])
# Running model
weather_func_fnn <- fnn.fit(resp = resp_train,
func_cov = weather_data_train,
scalar_cov = scalar_train,
basis_choice = c("bspline"),
num_basis = c(7),
hidden_layers = 2,
neurons_per_layer = c(1024, 1024),
activations_in_layers = c("sigmoid", "linear"),
domain_range = list(c(1, 365)),
epochs = 300,
learn_rate = 0.01,
func_resp_method = 1)
# Getting predictions
predictions = fnn.predict(weather_func_fnn,
weather_data_test,
scalar_cov = scalar_test,
basis_choice = c("bspline"),
num_basis = c(7),
domain_range = list(c(1, 365)))
# Looking at plot
fnn.plot(predictions, domain_range = c(1, 365), step_size = 1, Basis_Type = "bspline")
Prediction using Functional Neural Networks
Description
The prediction function associated with the fnn model allowing for users to quickly get scalar or functional outputs.
Usage
fnn.predict(
model,
func_cov,
scalar_cov = NULL,
basis_choice = c("fourier"),
num_basis = c(7),
domain_range = list(c(0, 1)),
covariate_scaling = TRUE,
raw_data = FALSE
)
Arguments
model |
A keras model as outputted by |
func_cov |
The form of this depends on whether the |
scalar_cov |
A matrix contained the multivariate information associated with the data set. This is all of your
non-longitudinal data. Must be the same covariates as input into
|
basis_choice |
A vector of size k (the number of functional covariates) with either "fourier" or "bspline" as the inputs.
This is the choice for the basis functions used for the functional weight expansion. If you only specify one, with k > 1,
then the argument will repeat that choice for all k functional covariates. Should be the same choices as input into
|
num_basis |
A vector of size k defining the number of basis functions to be used in the basis expansion. Must be odd
for |
domain_range |
List of size k. Each element of the list is a 2-dimensional vector containing the upper and lower
bounds of the k-th functional weight. Must be the same covariates as input into |
covariate_scaling |
If TRUE, then data will be internally scaled before model development. |
raw_data |
If TRUE, then user does not need to create functional observations beforehand. The function will internally take care of that pre-processing. |
Details
No additional details for now.
Value
The following is returned:
Predictions
– A vector of scalar predictions or a matrix of basis coefficients for functional responses.
Examples
# First, we do an example with a scalar response:
# loading data
tecator = FuncNN::tecator
# libraries
library(fda)
# define the time points on which the functional predictor is observed.
timepts = tecator$absorp.fdata$argvals
# define the fourier basis
nbasis = 29
spline_basis = create.fourier.basis(tecator$absorp.fdata$rangeval, nbasis)
# convert the functional predictor into a fda object and getting deriv
tecator_fd = Data2fd(timepts, t(tecator$absorp.fdata$data), spline_basis)
tecator_deriv = deriv.fd(tecator_fd)
tecator_deriv2 = deriv.fd(tecator_deriv)
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Response
tecator_resp = tecator$y$Fat
# Getting data into right format
tecator_data = array(dim = c(nbasis, length(tecator_resp), 3))
tecator_data[,,1] = tecator_fd$coefs
tecator_data[,,2] = tecator_deriv$coefs
tecator_data[,,3] = tecator_deriv2$coefs
# Splitting into test and train for third FNN
ind = 1:165
tec_data_train <- array(dim = c(nbasis, length(ind), 3))
tec_data_test <- array(dim = c(nbasis, nrow(tecator$absorp.fdata$data) - length(ind), 3))
tec_data_train = tecator_data[, ind, ]
tec_data_test = tecator_data[, -ind, ]
tecResp_train = tecator_resp[ind]
tecResp_test = tecator_resp[-ind]
scalar_train = data.frame(tecator_scalar[ind,1])
scalar_test = data.frame(tecator_scalar[-ind,1])
# Setting up network
tecator_fnn = fnn.fit(resp = tecResp_train,
func_cov = tec_data_train,
scalar_cov = scalar_train,
basis_choice = c("fourier", "fourier", "fourier"),
num_basis = c(5, 5, 7),
hidden_layers = 4,
neurons_per_layer = c(64, 64, 64, 64),
activations_in_layers = c("relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050), c(850, 1050), c(850, 1050)),
epochs = 300,
learn_rate = 0.002)
# Predicting
pred_tec = fnn.predict(tecator_fnn,
tec_data_test,
scalar_cov = scalar_test,
basis_choice = c("fourier", "fourier", "fourier"),
num_basis = c(5, 5, 7),
domain_range = list(c(850, 1050), c(850, 1050), c(850, 1050)))
# Now an example with functional responses
# libraries
library(fda)
# Loading data
data("daily")
# Creating functional data
temp_data = array(dim = c(65, 35, 1))
tempbasis65 = create.fourier.basis(c(0,365), 65)
tempbasis7 = create.bspline.basis(c(0,365), 7, norder = 4)
timepts = seq(1, 365, 1)
temp_fd = Data2fd(timepts, daily$tempav, tempbasis65)
prec_fd = Data2fd(timepts, daily$precav, tempbasis7)
prec_fd$coefs = scale(prec_fd$coefs)
# Data set up
temp_data[,,1] = temp_fd$coefs
resp_mat = prec_fd$coefs
# Non functional covariate
weather_scalar = data.frame(total_prec = apply(daily$precav, 2, sum))
# Splitting into test and train
ind = 1:30
nbasis = 65
weather_data_train <- array(dim = c(nbasis, length(ind), 1))
weather_data_test <- array(dim = c(nbasis, ncol(daily$tempav) - length(ind), 1))
weather_data_train[,,1] = temp_data[, ind, ]
weather_data_test[,,1] = temp_data[, -ind, ]
scalar_train = data.frame(weather_scalar[ind,1])
scalar_test = data.frame(weather_scalar[-ind,1])
resp_train = t(resp_mat[,ind])
resp_test = t(resp_mat[,-ind])
# Running model
weather_func_fnn <- fnn.fit(resp = resp_train,
func_cov = weather_data_train,
scalar_cov = scalar_train,
basis_choice = c("bspline"),
num_basis = c(7),
hidden_layers = 2,
neurons_per_layer = c(1024, 1024),
activations_in_layers = c("sigmoid", "linear"),
domain_range = list(c(1, 365)),
epochs = 300,
learn_rate = 0.01,
func_resp_method = 1)
# Getting Predictions
predictions = fnn.predict(weather_func_fnn,
weather_data_test,
scalar_cov = scalar_test,
basis_choice = c("bspline"),
num_basis = c(7),
domain_range = list(c(1, 365)))
# Looking at predictions
predictions
# Classification Prediction
# Loading data
tecator = FuncNN::tecator
# Making classification bins
tecator_resp = as.factor(ifelse(tecator$y$Fat > 25, 1, 0))
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Splitting data
ind = sample(1:length(tecator_resp), round(0.75*length(tecator_resp)))
train_y = tecator_resp[ind]
test_y = tecator_resp[-ind]
train_x = tecator$absorp.fdata$data[ind,]
test_x = tecator$absorp.fdata$data[-ind,]
scalar_train = data.frame(tecator_scalar[ind,1])
scalar_test = data.frame(tecator_scalar[-ind,1])
# Making list element to pass in
func_covs_train = list(train_x)
func_covs_test = list(test_x)
# Now running model
fit_class = fnn.fit(resp = train_y,
func_cov = func_covs_train,
scalar_cov = scalar_train,
hidden_layers = 6,
neurons_per_layer = c(24, 24, 24, 24, 24, 58),
activations_in_layers = c("relu", "relu", "relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050)),
learn_rate = 0.001,
epochs = 100,
raw_data = TRUE,
early_stopping = TRUE)
# Running prediction
predict_class = fnn.predict(fit_class,
func_cov = func_covs_test,
scalar_cov = scalar_test,
domain_range = list(c(850, 1050)),
raw_data = TRUE)
# Rounding predictions (they are probabilities)
rounded_preds = ifelse(round(predict_class)[,2] == 1, 1, 0)
# Confusion matrix
# caret::confusionMatrix(as.factor(rounded_preds), as.factor(test_y))
Tuning Functional Neural Networks
Description
A convenience function for the user that implements a simple grid search for the purpose of tuning. For each combination in the grid, a cross-validated error is calculated. The best combination is returned along with additional information. This function only works for scalar responses.
Usage
fnn.tune(
tune_list,
resp,
func_cov,
scalar_cov = NULL,
basis_choice,
domain_range,
batch_size = 32,
decay_rate = 0,
nfolds = 5,
cores = 4,
raw_data = FALSE
)
Arguments
tune_list |
This is a list object containing the values from which to develop the grid. For each of the hyperparameters
that can be tuned for ( |
resp |
For scalar responses, this is a vector of the observed dependent variable. For functional responses, this is a matrix where each row contains the basis coefficients defining the functional response (for each observation). |
func_cov |
The form of this depends on whether the |
scalar_cov |
A matrix contained the multivariate information associated with the data set. This is all of your non-longitudinal data. |
basis_choice |
A vector of size k (the number of functional covariates) with either "fourier" or "bspline" as the inputs. This is the choice for the basis functions used for the functional weight expansion. If you only specify one, with k > 1, then the argument will repeat that choice for all k functional covariates. |
domain_range |
List of size k. Each element of the list is a 2-dimensional vector containing the upper and lower bounds of the k-th functional weight. |
batch_size |
Size of the batch for stochastic gradient descent. |
decay_rate |
A modification to the learning rate that decreases the learning rate as more and more learning iterations are completed. |
nfolds |
The number of folds to be used in the cross-validation process. |
cores |
For the purpose of parallelization. |
raw_data |
If TRUE, then user does not need to create functional observations beforehand. The function will internally take care of that pre-processing. |
Details
No additional details for now.
Value
The following are returned:
Parameters
– The final list of hyperparameter chosen by the tuning process.
All_Information
– A list object containing the errors for every combination in the grid. Each element of the list
corresponds to a different choice of number of hidden layers.
Best_Per_Layer
– An object that returns the best parameter combination for each choice of hidden layers.
Grid_List
– An object containing information about all combinations tried by the tuning process.
Examples
# libraries
library(fda)
# Loading data
data("daily")
# Obtaining response
total_prec = apply(daily$precav, 2, mean)
# Creating functional data
temp_data = array(dim = c(65, 35, 1))
tempbasis65 = create.fourier.basis(c(0,365), 65)
timepts = seq(1, 365, 1)
temp_fd = Data2fd(timepts, daily$tempav, tempbasis65)
# Data set up
temp_data[,,1] = temp_fd$coefs
# Creating grid
tune_list_weather = list(num_hidden_layers = c(2),
neurons = c(8, 16),
epochs = c(250),
val_split = c(0.2),
patience = c(15),
learn_rate = c(0.01, 0.1),
num_basis = c(7),
activation_choice = c("relu", "sigmoid"))
# Running Tuning
weather_tuned = fnn.tune(tune_list_weather,
total_prec,
temp_data,
basis_choice = c("fourier"),
domain_range = list(c(1, 24)),
nfolds = 2)
# Looking at results
weather_tuned
Classic Tecator data set.
Description
Classic Tecator data set.
Usage
data(tecator)
Format
An object containing the response and absorbance curve values.
References
Thodberg, H. H. (2015) “Tecator meat sample dataset”, http://lib.stat.cmu.edu/datasets/tecator StatLib Datasets Archive