| Type: | Package |
| Title: | An Extended Mallows Model and Its Hierarchical Version for Ranked Data Aggregation |
| Version: | 0.1.0 |
| Date: | 2018-06-28 |
| Description: | For multiple full/partial ranking lists, R package 'ExtMallows' can (1) detect whether the input ranking lists are over-correlated, and (2) use the Mallows model or extended Mallows model to integrate the ranking lists, and (3) use hierarchical extended Mallows model for rank integration if there are groups of over-correlated ranking lists. |
| Author: | Han Li, Minxuan Xu, Jun S. Liu and Xiaodan Fan |
| Maintainer: | Han Li <hli@szu.edu.cn> |
| Depends: | R (≥ 3.1.0) |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| Packaged: | 2018-07-05 14:25:54 UTC; Administrator |
| NeedsCompilation: | no |
| Repository: | CRAN |
| Date/Publication: | 2018-07-05 15:30:10 UTC |
An extended Mallows model for aggregating multiple ranking lists
Description
It uses the extended Mallows model to aggregate multiple full/partial ranking lists.
Usage
EMM(rankings, initial.method, it.max)
Arguments
rankings |
A n by m matrix, with each column representing a ranking list, which ranks the items from the most preferred to the least preferred. For missing items, use 0 to denote them. |
initial.method |
the method for initializing the value of pi0, with four options: mean, median, geometric and random (the mean of three randomly sampled ranking lists). By default, initial.method="mean". |
it.max |
the maximum number of iterations. By default, it.max=20. |
Value
op.phi |
optimal value of phi |
op.omega |
optimal value of omega |
op.alpha |
optimal value of alpha |
op.pi0 |
optimal value of pi0, ranking the items from the most preferred to the least preferred |
max.logL |
maximum value of log-likelihood |
Author(s)
Han Li, Minxuan Xu, Jun S. Liu and Xiaodan Fan
References
An extended Mallows model for ranked data aggregation
Examples
data(simu1)
res=EMM(rankings = simu1, initial.method = "mean", it.max = 20)
res$op.phi
res$op.omega
res$op.pi0
A hierarchical extended Mallows model for aggregating multiple ranking lists
Description
It uses the hierarchical extended Mallows model to aggregate multiple full/partial ranking lists.
Usage
HEMM(rankings, num.kappa, is.kappa.ranker, initial.method, it.max)
Arguments
rankings |
A n by m matrix, with each column representing a ranking list, which ranks the items from the most preferred to the least preferred. For missing items, use 0 to denote them. |
num.kappa |
the number of over-correlated ranking groups |
is.kappa.ranker |
a list of over-correlated ranking groups, with the k-th element denoting the column numbers of the rankings that belong to the k-th group |
initial.method |
the method for initializing the value of pi0, with four options: mean, median, geometric and random (the mean of three randomly sampled ranking lists). By default, initial.method="mean". |
it.max |
the maximum number of iterations. By default, it.max=20. |
Value
op.phi |
optimal value of phi |
op.phi1 |
optimal value of phi1, the phi value in over-correlated ranking groups |
op.omega |
optimal value of omega |
op.alpha |
optimal value of alpha |
op.pi0 |
optimal value of pi0, ranking the items from the most preferred to the least preferred |
op.kappa |
optimal value of kappa, denoting the items from the most preferred to the least preferred |
max.logL |
maximum value of log-likelihood |
Author(s)
Han Li, Minxuan Xu, Jun S. Liu and Xiaodan Fan
References
An extended Mallows model for ranked data aggregation
Examples
data(simu3)
res=HEMM(rankings = simu3, num.kappa = 2, is.kappa.ranker = list(1:5, 6:10),
initial.method = "mean", it.max = 20)
res$op.phi
res$op.phi1
res$op.omega
res$op.pi0
data(NBArankings)
res=HEMM(rankings = NBArankings, num.kappa = 1, is.kappa.ranker = list(1:6),
initial.method = "mean", it.max = 20)
res$op.omega
res$op.pi0
res$op.kappa
The Mallows model for aggregating multiple ranking lists
Description
It uses the Mallows model to aggregate multiple full/partial ranking lists.
Usage
MM(rankings, initial.method, it.max)
Arguments
rankings |
A n by m matrix, with each column representing a ranking list, which ranks the items from the most preferred to the least preferred. For missing items, use 0 to denote them. |
initial.method |
the method for initializing the value of pi0, with four options: mean, median, geometric and random (the mean of three randomly sampled ranking lists). By default, initial.method="mean". |
it.max |
the maximum number of iterations. By default, it.max=20. |
Value
op.phi |
optimal value of phi |
op.pi0 |
optimal value of pi0, ranking the items from the most preferred to the least preferred |
max.logL |
maximum value of log-likelihood |
Author(s)
Han Li, Minxuan Xu, Jun S. Liu and Xiaodan Fan
References
Mallows, C. L. (1957). Non-null ranking models, Biometrika 44(1/2): 114-130.
Examples
data(simu1)
res=MM(rankings = simu1, initial.method = "mean", it.max = 20)
res$op.phi
res$op.pi0
A real example of rankings of NBA teams
Description
This example is about aggregating the multiple rankings of NBA teams and was studied by Deng et al. (2014). They collected 34 rankings, including 6 professional rankings and 28 amateur rankings, for the 30 NBA teams in the 2011-2012 season. For the missing items in the partial rankings, we use number 0 to denote them.
Usage
data("NBArankings")
Format
A data frame with 30 observations on the following 34 variables.
V1a factor with levels
76ersBobcatsBucksBullsCavaliersCelticsClippersGrizzliesHawksHeatHornetsJazzKingsKnicksLakersMagicMavericksNetsNuggetsPacersPistonsRaptorsRocketsSpursSunsThunderTimberwolvesTrailBlazersWarriorsWizardsV2a factor with levels
76ersBobcatsBucksBullsCavaliersCelticsClippersGrizzliesHawksHeatHornetsJazzKingsKnicksLakersMagicMavericksNetsNuggetsPacersPistonsRaptorsRocketsSpursSunsThunderTimberwolvesTrailBlazersWarriorsWizardsV3a factor with levels
76ersBobcatsBucksBullsCavaliersCelticsClippersGrizzliesHawksHeatHornetsJazzKingsKnicksLakersMagicMavericksNetsNuggetsPacersPistonsRaptorsRocketsSpursSunsThunderTimberwolvesTrailBlazersWarriorsWizardsV4a factor with levels
76ersBobcatsBucksBullsCavaliersCelticsClippersGrizzliesHawksHeatHornetsJazzKingsKnicksLakersMagicMavericksNetsNuggetsPacersPistonsRaptorsRocketsSpursSunsThunderTimberwolvesTrailBlazersWarriorsWizardsV5a factor with levels
76ersBobcatsBucksBullsCavaliersCelticsClippersGrizzliesHawksHeatHornetsJazzKingsKnicksLakersMagicMavericksNetsNuggetsPacersPistonsRaptorsRocketsSpursSunsThunderTimberwolvesTrailBlazersWarriorsWizardsV6a factor with levels
76ersBobcatsBucksBullsCavaliersCelticsClippersGrizzliesHawksHeatHornetsJazzKingsKnicksLakersMagicMavericksNetsNuggetsPacersPistonsRaptorsRocketsSpursSunsThunderTimberwolvesTrailBlazersWarriorsWizardsV7a factor with levels
0BullsCelticsHawksHeatLakersPacersSpursThunderV8a factor with levels
0BullsCelticsClippersHeatKnicksLakersSpursThunderV9a factor with levels
0BullsCelticsHeatKnicksLakersMavericksSpursThunderV10a factor with levels
0BullsCelticsClippersHeatLakersMavericksSpursThunderV11a factor with levels
0BullsCelticsHeatKnicksLakersNuggetsWarriorsWizardsV12a factor with levels
0BullsCelticsClippersHeatLakersMavericksSpursThunderV13a factor with levels
0BullsCelticsHornetsJazzKingsLakersMagicRocketsV14a factor with levels
076ersCelticsHeatKingsLakersRocketsSpursSunsV15a factor with levels
0BullsCelticsHeatLakersMavericksRocketsSpursThunderV16a factor with levels
0CelticsHawksHeatLakersMavericksRaptorsSpursThunderV17a factor with levels
076ersCelticsHeatKnicksLakersMavericksNetsThunderV18a factor with levels
076ersBullsCavaliersCelticsHeatLakersMavericksThunderV19a factor with levels
0BullsHeatKingsLakersRocketsSpursSunsWarriorsV20a factor with levels
0BucksCelticsHeatLakersMagicMavericksRocketsSunsV21a factor with levels
0CelticsHeatKingsLakersMavericksSpursSunsTimberwolvesV22a factor with levels
0CelticsHeatKingsLakersSpursSunsThunderTimberwolvesV23a factor with levels
0BobcatsCelticsHeatLakersMavericksNuggetsSpursSunsV24a factor with levels
076ersHeatKnicksLakersPistonsRocketsSpursWizardsV25a factor with levels
076ersCelticsHawksHeatKnicksLakersMagicThunderV26a factor with levels
0BullsCavaliersCelticsHawksHeatKnicksLakersRocketsV27a factor with levels
076ersClippersLakersMagicMavericksPacersRaptorsWarriorsV28a factor with levels
076ersBullsCelticsHeatLakersPistonsRocketsWizardsV29a factor with levels
076ersBullsGrizzliesHawksKingsKnicksNetsTimberwolvesV30a factor with levels
076ersBucksBullsKnicksRaptorsRocketsThunderTimberwolvesV31a factor with levels
076ersHeatLakersMagicMavericksPacersPistonsSunsV32a factor with levels
076ersBullsCelticsHeatKnicksLakersMagicPacersV33a factor with levels
0ClippersHeatKnicksLakersMavericksNetsNuggetsWizardsV34a factor with levels
0BullsHawksHeatJazzKnicksNetsRocketsTimberwolves
References
Deng, K., Han, S., Li, K. J. and Liu, J. S. (2014). Bayesian aggregation of order-based rank data, Journal of the American Statistical Association 109(507): 1023-1039.
Examples
data(NBArankings)
dim(NBArankings)
p value for measuring the correlation of pairwise rankings
Description
It caclulates the p values that measure the correlation of pariwise rankings.
Usage
corrRankings(rankings)
Arguments
rankings |
A n by m data frame, with each column representing a ranking list, which ranks the items from the most preferred to the least preferred. For missing items, use 0 to denote them. |
Value
pair.pvalue |
a symmetric matrix of p values, with the (i,j)-th element denoting the p value of the i,j-th rankings. |
Note
Note that the input rankings should have at least 8 rankings. When constructing the samples of rescaled V distance for a given rank position, the number of samples should at least be 28 and the number of rankings that have items up to this position should account for at least 2/3 of the total number of rankings, otherwise the p value calculation stops at this position.
Author(s)
Han Li, Minxuan Xu, Jun S. Liu and Xiaodan Fan
References
An extended Mallows model for ranked data aggregation
Examples
data(simu3)
pvalue=corrRankings(rankings = simu3)
#threshold the p values
threshold=0.05
pvalue.trunc=ifelse(pvalue<=0.05, pvalue, 1)
#plot the p values
x=y=1:ncol(pvalue)
par(mfrow=c(1,2))
image(x, y, pvalue, xlab = NA, ylab = NA, sub = "rank coefficient")
image(x, y, pvalue.trunc, xlab = NA, ylab = NA, sub = "rank coefficient < 0.05")
Simulation data 1
Description
This data set is simulated as described in the Simulation Study 1 of the reference. It is a 30 by 6 data frame, representing 6 independent top-30 partial rankings.
Usage
data("simu1")
Format
A data frame with 30 observations on the following 6 variables.
V1a numeric vector
V2a numeric vector
V3a numeric vector
V4a numeric vector
V5a numeric vector
V6a numeric vector
References
An extended Mallows model for ranked data aggregation
Examples
data(simu1)
dim(simu1)
Simulation data 2
Description
This data set is simulated as described in the Simulation Study 2 of the reference. It is a 40 by 6 data frame, representing 6 independent top-40 partial rankings.
Usage
data("simu2")
Format
A data frame with 40 observations on the following 6 variables.
V1a numeric vector
V2a numeric vector
V3a numeric vector
V4a numeric vector
V5a numeric vector
V6a numeric vector
References
An extended Mallows model for ranked data aggregation
Examples
data(simu2)
dim(simu2)
Simulation data 3
Description
This data set is simulated as described in the Simulation Study 3 of the reference. It is a 100 by 20 data frame, representing 20 full rankings. The columns 1-5 and the columns 6-10 represent two highly correlated ranking groups, respectively.
Usage
data("simu3")
Format
A data frame with 100 observations on the following 20 variables.
V1a numeric vector
V2a numeric vector
V3a numeric vector
V4a numeric vector
V5a numeric vector
V6a numeric vector
V7a numeric vector
V8a numeric vector
V9a numeric vector
V10a numeric vector
V11a numeric vector
V12a numeric vector
V13a numeric vector
V14a numeric vector
V15a numeric vector
V16a numeric vector
V17a numeric vector
V18a numeric vector
V19a numeric vector
V20a numeric vector
References
An extended Mallows model for ranked data aggregation
Examples
data(simu3)
dim(simu3)