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Description

Functions to make the data analysis with the emphasis on biological data. They can deal with both
numerical and nominal features. Biocomb includes functions for several feature ranking, feature
selection algorithms. The feature ranking is based on several criteria: information gain, symmetri-
cal uncertainty, chi-squared statistic etc. There are a number of features selection algorithms: Chi2
algorithm, based on chi-squared test, fast correlation-based filter algorithm, feature weighting algo-
rithm (RelieF), sequential forward search algorithm (CorrSF), Correlation-based feature selection
algorithm (CFS). Package includes several classification algorithms with embedded feature selec-
tion and validation schemes. It includes also the functions for calculation of feature AUC (Area
Under the ROC Curve) values with statistical significance analysis, calculation of Area Above the
RCC (AAC) values. For two- and multi-class problems it is possible to use functions for HUM (hy-
pervolume under manifold) calculation and construction 2D- and 3D- ROC curves. Relative Cost
Curves (RCC) are provided to estimate the classifier performance under unequal misclassification
costs.
Biocomb has a special function to deal with missing values, including different imputing schemes.

Details

Package: Biocomb
Type: Package
Version: 0.3
Date: 2016-08-14
License: GPL (>= 3)

Biocomb package presents the functions for two stages of data mining process: feature selection
and classification. One of the main functions of Biocomb is the select.process function. It
presents the infrostructure to perform the feature ranking or feature selection for the data set with
two or more class labels. Functions compute.aucs, select.inf.gain, select.inf.symm and
select.inf.chi2 calculate the different criterion measure for each feature in the dataset. Function
select.fast.filter realizes the fast correlation-based filter method. Function chi2.algorithm
performes Chi2 discretization algorithms with feature selection. Function select.forward.Corr
is designed for the sequential forward features search according to the correlation measure. Func-
tion select.forward.wrapper is the realization of the wrapper feature selection method with
sequential forward search strategy. The auxiliary function ProcessData performs the discretiza-
tion of the numerical features and is called from the several functions for feature selection. The
second main function of the Biocomb is classifier.loop which presents the infrastructure for
the classifier construction with the embedded feature selection and using the different schemes
for the performance validation. The functions compute.aucs, compute.auc.permutation, pauc,
pauclog, compute.auc.random are the functions for calculation of feature AUC (Area Under
the ROC Curve) values with statistical significance analysis. The functions plotRoc.curves is
assigned for the construction of the ROC curve in 2D-space. The functions cost.curve plots
the RCC and calculates the corresponding AAC to estimate the classifier performance under un-
equal misclassification costs problem. The function input_miss deals with missing value prob-
lem and realizes the two methods of missing value imputing. The function generate.data.miss
allows to generate the dataset with missing values from the input dataset in order to test the algo-
rithms, which are designed to deal with missing values problem. The functions CalculateHUM_seq,
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CalculateHUM_ROC, CalculateHUM_Plot are for HUM calculation and construction 2D- and 3D-
ROC curves.

Function

select.process Perform the features ranking or features selection
compute.aucs Calculate the AUC values
select.inf.gain Calculate the Information Gain criterion
select.inf.symm Calculate the Symmetrical uncertainty criterion
select.inf.chi2 Calculate the chi-squared statistic
select.fast.filter Select the feature subset with fast correlation-based filter method
chi2.algorithm Select the feature subset with Chi2 discretization algorithm.
select.forward.Corr Select the feature subset with forward search strategy and correlation measure
select.forward.wrapper Select the feature subset with a wrapper method
ProcessData Perform the discretization of the numerical features
classifier.loop Perform the classification with the embedded feature selection
pauc Calculate the p-values of the statistical significance of the two-class difference
pauclog Calculate the logarithm of p-values of the statistical significance
compute.auc.permutation Compute the p-value of the significance of the AUC using the permutation test
compute.auc.random Compute the p-value of the significance of the AUC using random sample generation
plotRoc.curves Plot the ROC curve in 2D-space
CalculateHUM_seq Calculate a maximal HUM value and the corresponding permutation of class labels
CalculateHUM_Ex Calculate the HUM values with exaustive serach for specified number of class labels
CalculateHUM_ROC Function to construct and plot the 2D- or 3d-ROC curve
CalcGene Compute the HUM value for one feature
CalcROC Compute the point coordinates to plot the 2D- or 3D-ROC curve
CalculateHUM_Plot Plot the 2D-ROC curve
Calculate3D Plot the 3D-ROC curve
cost.curve Plot the RCC and calculate the AAC for unequal misclassification costs
input_miss Perform the missing values imputation
generate.data.miss Generate the dataset with missing values

Dataset

This package comes with two simulated datasets and a real dataset of leukemia patients with 72
cases and 101 features. The last feature is the class (disease labels).

Installing and using

To install this package, make sure you are connected to the internet and issue the following com-
mand in the R prompt:

install.packages("Biocomb")

To load the package in R:
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library(Biocomb)

Author(s)

Natalia Novoselova, Junxi Wang,Frank Pessler,Frank Klawonn

Maintainer: Natalia Novoselova <novos65@mail.ru>

References

H. Liu and L. Yu. "Toward Integrating Feature Selection Algorithms for Classification and Cluster-
ing", IEEE Trans. on Knowledge and Data Engineering, pdf, 17(4), 491-502, 2005.
L. Yu and H. Liu. "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter
Solution". In Proceedings of The Twentieth International Conference on Machine Leaning (ICML-
03), Washington, D.C. pp. 856-863. August 21-24, 2003.
Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification?A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.
Olga Montvida and Frank Klawonn Relative cost curves: An alternative to AUC and an extension
to 3-class problems,Kybernetika 50 no. 5, 647-660, 2014

See Also

CRAN packages arules or discretization for feature discretization. CRAN packages pROC for
ROC curves. CRAN packages FSelector for chi-squared test, forward search strategy. CRAN
packages pamr for nearest shrunken centroid classifier, CRAN packages MASS, e1071, random-
Forest,class, nnet, rpart are used in this package.

Examples

data(data_test)
# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

# Perform the feature selection using the fast correlation-based filter algorithm
disc="MDL"
threshold=0.2
attrs.nominal=numeric()
out=select.fast.filter(data_test,disc.method=disc,threshold=threshold,
attrs.nominal=attrs.nominal)

# Perform the classification with cross-validation of results
out=classifier.loop(data_test,classifiers=c("svm","lda","rf"),
feature.selection="auc", flag.feature=FALSE,method.cross="fold-crossval")

# Calculate the coordinates for 2D- or 3D- ROC curve and the optimal threshold point
## Not run: data(data_test)
xllim<--4
xulim<-4
yllim<-30
yulim<-110
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attrs.no=1
pos.Class<-levels(data_test[,ncol(data_test)])[1]
add.legend<-TRUE

aacs<-rep(0,length(attrs.no))
color<-c(1:length(attrs.no))

out <- cost.curve(data_test,attrs.no, pos.Class,col=color[1],add=F,
xlim=c(xllim,xulim),ylim=c(yllim,yulim))

## End(Not run)

CalcGene Calculate HUM value

Description

This is the auxiliary function of the Biocomb package. It computes a HUM value for individual
feature and returns a “List” object, consisting of HUM value and the best permutation of class
labels in “seq” vector. This “seq” vector can be passed to the function CalculateHUM_ROC.

Usage

CalcGene(s_data, seqAll, prodValue,thresholds)

Arguments

s_data a list, which contains the vectors of sorted feature values for individual class
labels.

seqAll a numeric matrix of all the permutations of the class labels, where each row
corresponds to individual permutation vector.

prodValue a numeric value, which is the product of the sizes of feature vectors, correspond-
ing to analized class labels.

thresholds a numeric vector, containing the values of thresholds for calculating ROC curve
coordinates.

Details

This function’s main job is to compute the maximal HUM value between the all possible permu-
tations of class labels for individual feature, selected for analysis. See the “Value” section to this
page for more details.

Value

The data must be provided without missing values in order to process. A returned list consists of
the following fields:

HUM a list of HUM values for the specified number of analyzed features
seq a list of vectors, each containing the sequence of class labels
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Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error
is triggered with message “Values are missing”.

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.

See Also

CalculateHUM_Ex, CalculateHUM_ROC

Examples

data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])

xdata=leukemia72
indexF=3
indexClass=ncol(xdata)
label=levels(xdata[,indexClass])

indexLabel=label[1:2]

indexL=NULL
for(i in 1:length(indexLabel))
{

indexL=c(indexL,which(label==indexLabel[i]))
}

indexEach=NULL
indexUnion=NULL
for(i in 1:length(label))
{

vrem=which(xdata[,indexClass]==label[i])
indexEach=c(indexEach,list(vrem))
if(length(intersect(label[i],indexLabel))==1)
indexUnion=union(indexUnion,vrem)

}

s_data=NULL
dataV=xdata[,indexF]
prodValue=1

for (j in 1:length(indexLabel))
{

vrem=sort(dataV[indexEach[[indexL[j]]]])
s_data=c(s_data,list(vrem))
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prodValue = prodValue*length(vrem)
}

len=length(indexLabel)
seq=permutations(len,len,1:len)

#claculate the threshold values
thresholds <- sort(unique(dataV[indexUnion]))
thresholds=(c(-Inf, thresholds) + c(thresholds, +Inf))/2

out=CalcGene(s_data,seq,prodValue,thresholds)

CalcROC Calculate ROC points

Description

This is the auxiliary function of the Biocomb package. It computes a point coordinates for plotting
ROC curve and returns a “List” object, consisting of sensitivity and specificity values for 2D-ROC
curve and 3D-points for 3D-ROC curve, the optimal threshold values with the corresponding feature
values and the accuracy of the classifier (feature).

Usage

CalcROC(s_data, seq, thresholds)

Arguments

s_data a list, which contains the vectors of sorted feature values for individual class
labels.

seq a numeric vector, containing the particular permutation of class labels.

thresholds a numeric vector, containing the values of thresholds for calculating ROC curve
coordinates.

Details

This function’s main job is to compute the point coordinates to plot the 2D- or 3D-ROC curve, the
optimal threshold values and the accuracy of classifier. See the “Value” section to this page for
more details. The optimal threshold for two-class problem is the pair of sensitivity and specificity
values for the selected feature. The optimal threshold for three-class problem is the 3D-point with
the coordinates presenting the fraction of the correctly classified data objects for each class. The
calculation of the optimal threshold is described in section “Threshold”.



CalcROC 9

Value

The data must be provided without missing values in order to process. A returned list consists of
the following fields:

Sn a specificity values for 2D-ROC construction and the first coordinate for 3D-
ROC construction

Sp a sensitivity values for 2D-ROC construction and the second coordinate for 3D-
ROC construction

S3 the third coordinate for 3D-ROC construction

optSn the optimal specificity value for 2D-ROC construction and the first coordinate
of the op-timal threshold for 3D-ROC construction

optSp the optimal sensitivity value for 2D-ROC construction and the second coordinate
of the optimal threshold for 3D-ROC construction

optS3 the third coordinate of the optimal threshold for 3D-ROC construction

optThre the feature value according to the optimal threshold (optSn,optSp) for two-class
problem

optThre1 the first feature value according to the optimal threshold (optSn,optSp,optS3)
for three-class problem

optThre2 the second feature value according to the optimal threshold (optSn,optSp,optS3)
for three-class problem

accuracy the accuracy of classifier (feature) for the optimal threshold

Threshold

The optimal threshold value is calculated for two-class problem as the pair “(optSn, optSp)” cor-
responding to the maximal value of “Sn+Sp”. According to “(optSn, optSp)” the corresponding
feature threshold value “optThre” is calculated. The optimal threshold value is calculated for
three-class problem as the pair “(optSn, optSp,optS3)” corresponding to the maximal value of
“Sn+Sp+S3”.According to “(optSn, optSp,optS3)” the corresponding feature threshold values “opt-
Thre1,optThre2” are calculated. The accuracy of the classifier is the mean value of dQuote(optSn,
optSp) for two-class problem and the mean value of “(optSn, optSp,optS3)” for three-class problem.

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error
is triggered with message “Values are missing”.

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.

See Also

CalculateHUM_Ex, CalculateHUM_ROC
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Examples

data(leukemia72_2)
# Basic example
# class label must be factor
leukemia72_2[,ncol(leukemia72_2)]<-as.factor(leukemia72_2[,ncol(leukemia72_2)])

xdata=leukemia72_2
indexF=1:3
indexClass=ncol(xdata)

label=levels(xdata[,indexClass])
indexLabel=label

out=CalculateHUM_seq(xdata,indexF,indexClass,indexLabel)

HUM<-out$HUM
seq<-out$seq

indexL=NULL
for(i in 1:length(indexLabel))
{

indexL=c(indexL,which(label==indexLabel[i]))
}

indexEach=NULL
indexUnion=NULL

for(i in 1:length(label))
{

vrem=which(xdata[,indexClass]==label[i])
indexEach=c(indexEach,list(vrem))
if(length(intersect(label[i],indexLabel))==1)
indexUnion=union(indexUnion,vrem)

}
s_data=NULL
dataV=xdata[,indexF[1]] #single feature
prodValue=1
for (j in 1:length(indexLabel))
{

vrem=sort(dataV[indexEach[[indexL[j]]]])

s_data=c(s_data,list(vrem))
prodValue = prodValue*length(vrem)

}
#calculate the threshold values for plot of 2D ROC and 3D ROC
thresholds <- sort(unique(dataV[indexUnion]))
thresholds=(c(-Inf, thresholds) + c(thresholds, +Inf))/2

out=CalcROC(s_data,seq[,indexF[1]], thresholds)
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Calculate3D Plot the 3D-ROC curve

Description

This function plots the 3D-ROC curve using the point coordinates, computed by the function
CalculateHUM_ROC. Optionally visualizes the optimal threshold point, which gives the maximal
accuracy of the classifier(feature) (see CalcROC).

Usage

Calculate3D(sel,Sn,Sp,S3,optSn,optSp,optS3,thresholds,HUM,
name,print.optim=TRUE)

Arguments

sel a character value, which is the name of the selected feature.

Sn a numeric vector of the x-coordinates of the ROC curve..

Sp a numeric vector of the y-coordinates of the ROC curve.

S3 a numeric vector of the z-coordinates of the ROC curve.

optSn the first coordinate of the optimal threshold

optSp the second coordinate of the optimal threshold

optS3 the third coordinate of the optimal threshold

thresholds a numeric vector with threshold values to calculate point coordinates.

HUM a numeric vector of HUM values, calculated using function.

name a character vector of class labels.

print.optim a boolean parameter to plot the optimal threshold point on the graph. The default
value is TRUE.

Details

This function’s main job is to plot the 3D-ROC curve according to the given point coordinates.

Value

The function doesn’t return any value.

Errors

If there exists NA values for specificity or sensitivity values, or HUM values the plotting fails and
an error is triggered with message “Values are missing”
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References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.
Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn.
HUM Calculator and HUM package for R: easy-to-use software tools for multicategory receiver
operating characteristic analysis» / Bioinformatics. – 2014. – Vol. 30 (11): 1635-1636 doi:10.1093/
bioinformatics/btu086.

See Also

CalculateHUM_seq, CalculateHUM_ROC

Examples

data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])

xdata=leukemia72

indexF=names(xdata)[10]

indexClass=ncol(xdata)
label=levels(xdata[,indexClass])
indexLabel=label

out=CalculateHUM_seq(xdata,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(xdata,indexF,indexClass,indexLabel,seq)
Calculate3D(indexF,out$Sn,out$Sp,out$S3,out$optSn,out$optSp,out$optS3,
out$thresholds,HUM,indexLabel[seq])

CalculateHUM_Ex Calculate HUM value

Description

This function calculates the HUM (hypervolume under manifold) feature values with the exhaustive
search, i.e. for all combinations of the defined number of categories from the whole set of available
categories. The function is used for ranking the features (in decreasing order of HUM values).
HUM values are the extension of the AUC values for more than two classes. It can handle only
numerical values. It computes a HUM value and returns a “List” object, consisting of HUM value
and the best permutation of class labels in “seq” vector. This “seq” vector can be passed to the
function CalculateHUM_ROC for the calculating the coordinates of the 2D or 3D ROC.
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Usage

CalculateHUM_Ex(data,indexF,indexClass,allLabel,amountL)

Arguments

data a dataset, a matrix of feature values for several cases, the additional column with
class labels is provided. Class labels could be numerical or character values. The
maximal number of classes is ten. The indexClass determines the column with
class labels.

indexF a numeric or character vector, containing the column numbers or column names
of the analyzed features.

indexClass a numeric or character value, containing the column number or column name of
the class labels.

allLabel a character vector, containing the column names of the class labels, selected for
the analysis.

amountL a number of the class categories to search for all the possible combinations.

Details

This function’s main job is to compute the maximal HUM value between the all possible permu-
tations of class labels, selected for analysis. See the “Value” section to this page for more details.
Before returning, it will call the CalcGene function to calculate the HUM value for each feature
(object)..

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the separate column contains
class labels. The maximal number of class labels equals 10. The computational efficiency of the
function descrease in the case of more than 1000 cases with more than 6 class labels. In order to
use all the functions of the package it is necessary to put the class label in the last column of the
dataset. The class label features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned list consists of th
the following fields:

HUM a list of HUM values for the specified number of analyzed features

seq a list of vectors, each containing the sequence of class labels

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.
Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn.
HUM Calculator and HUM package for R: easy-to-use software tools for multicategory receiver
operating characteristic analysis» / Bioinformatics. – 2014. – Vol. 30 (11): 1635-1636 doi:10.1093/
bioinformatics/btu086.
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See Also

CalculateHUM_seq, CalculateHUM_ROC

Examples

data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])

xdata=leukemia72
indexF=c(1:2)
indexClass=ncol(xdata)
allLabel=levels(xdata[,indexClass])

amountL=2
out=CalculateHUM_Ex(xdata,indexF,indexClass,allLabel,amountL)

CalculateHUM_Plot Plot 2D-ROC curve

Description

This function plots the 2D-ROC curve using the point coordinates, computed by the function
CalculateHUM_ROC.Optionally visualizes the optimal threshold point, which gives the maximal
accuracy of the classifier(feature) (see CalcROC).

Usage

CalculateHUM_Plot(sel,Sn,Sp,optSn,optSp,HUM,print.optim=TRUE)

Arguments

sel a character value, which is the name of the selected feature.

Sn a numeric vector of the x-coordinates of the ROC curve, which is the specificity
values of the standard ROC analysis..

Sp a numeric vector of the y-coordinates of the ROC curve, which is the sensitivity
values of the standard ROC analysis..

optSn the optimal specificity value for 2D-ROC construction

optSp the optimal sensitivity value for 2D-ROC construction

HUM a numeric vector of HUM values, calculated using function CalculateHUM_seq
or CalculateHUM_Ex.

print.optim a boolean parameter to plot the optimal threshold point on the graph. The default
value is TRUE.
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Details

This function’s main job is to plot the 2D-ROC curve according to the given point coordinates.

Value

The function doesn’t return any value.

Errors

If there exists NA values for specificity or sensitivity values, or HUM values the plotting fails and
an error is triggered with message “Values are missing”.

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.
Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn.
HUM Calculator and HUM package for R: easy-to-use software tools for multicategory receiver
operating characteristic analysis» / Bioinformatics. – 2014. – Vol. 30 (11): 1635-1636 doi:10.1093/
bioinformatics/btu086.

See Also

CalculateHUM_seq, CalculateHUM_ROC

Examples

data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])

xdata=leukemia72

indexF=names(xdata)[3]

indexClass=ncol(xdata)
label=levels(xdata[,indexClass])
indexLabel=label[1:2]

out=CalculateHUM_seq(xdata,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(xdata,indexF,indexClass,indexLabel,seq)

CalculateHUM_Plot(indexF,out$Sn,out$Sp,out$optSn,out$optSp,HUM)
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CalculateHUM_ROC Compute the points for ROC curve

Description

This is the function for computing the points for ROC curve. It returns a “List” object, consisting
of sensitivity and specificity values for 2D-ROC curve and 3D-points for 3D-ROC curve. Also the
optimal threshold values are returned. It can handle only numerical values.

Usage

CalculateHUM_ROC(data,indexF,indexClass,indexLabel,seq)

Arguments

data a dataset, a matrix of feature values for several cases, the additional column with
class labels is provided. Class labels could be numerical or character values. The
maximal number of classes is ten. The indexClass determines the column with
class labels.

indexF a numeric or character vector, containing the column numbers or column names
of the analyzed features.

indexClass a numeric or character value, containing the column number or column name of
the class labels.

indexLabel a character vector, containing the column names of the class labels, selected for
the analysis.

seq a numeric matrix, containing the permutation of the class labels for all features.

Details

This function’s main job is to compute the point coordinates to plot the 2D- or 3D-ROC curve and
the optimal threshold values. See the “Value” section to this page for more details. The function
calls the CalcROC to calculate the point coordinates, optimal thresholds and accuracy of classifier
(feature) in the threshold.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the separate column contains
class labels. The maximal number of class labels equals 10. In order to use all the functions of
the package it is necessary to put the class label in the last column of the dataset. The class label
features must be defined as factors.

Value

The data must be provided without missing values in order to process. A returned list consists of th
the following fields:

Sn a specificity values for 2D-ROC construction and the first coordinate for 3D-
ROC construction
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Sp a sensitivity values for 2D-ROC construction and the second coordinate for 3D-
ROC construction

S3 the third coordinate for 3D-ROC construction

optSn the optimal specificity value for 2D-ROC construction and the first coordinate
of the op-timal threshold for 3D-ROC construction

optSp the optimal sensitivity value for 2D-ROC construction and the second coordinate
of the optimal threshold for 3D-ROC construction

optS3 the third coordinate of the optimal threshold for 3D-ROC construction

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error
is triggered with message “Values are missing”.

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.
Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn.
HUM Calculator and HUM package for R: easy-to-use software tools for multicategory receiver
operating characteristic analysis» / Bioinformatics. – 2014. – Vol. 30 (11): 1635-1636 doi:10.1093/
bioinformatics/btu086.

See Also

CalculateHUM_Ex, CalculateHUM_seq

Examples

data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])

xdata=leukemia72
indexF=1:3
indexClass=ncol(xdata)
label=levels(xdata[,indexClass])
indexLabel=label[1:2]

out=CalculateHUM_seq(xdata,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(xdata,indexF,indexClass,indexLabel,seq)
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CalculateHUM_seq Calculate HUM value

Description

This function calculates the features weights using the HUM (hypervolume under manifold) values
criterion measure and is used for ranking the features (in decreasing order of HUM values). HUM
values are the extension of the AUC values for more than two classes. It can handle only numerical
values. It computes a HUM value and returns a “List” object, consisting of HUM value and the
best permutation of class labels in “seq” vector. This “seq” vector can be passed to the function
CalculateHUM_ROC for the calculating the coordinates of the 2D or 3D ROC. This function is used
internally to perform the classification with feature selection using the function “classifier.loop”
with argument “HUM” for feature selection.

Usage

CalculateHUM_seq(data,indexF,indexClass,indexLabel)

Arguments

data a dataset, a matrix of feature values for several cases, the additional column with
class labels is provided. Class labels could be numerical or character values. The
maximal number of classes is ten. The indexClass determines the column with
class labels.

indexF a numeric or character vector, containing the column numbers or column names
of the analyzed features.

indexClass a numeric or character value, containing the column number or column name of
the class labels.

indexLabel a character vector, containing the column names of the class labels, selected for
the analysis.

Details

This function’s main job is to compute the maximal HUM value between the all possible permu-
tations of class labels, selected for analysis. See the “Value” section to this page for more details.
Before returning, it will call the CalcGene function to calculate the HUM value for each feature
(object).

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the separate column contains
class labels. The maximal number of class labels equals 10. The computational efficiency of the
function descrease in the case of more than 1000 cases with more than 6 class labels. In order to
use all the functions of the package it is necessary to put the class label in the last column of the
dataset.The class label features must be defined as factors.
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Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned list consists of th
the following fields:

HUM a list of HUM values for the specified number of analyzed features

seq a list of vectors, each containing the sequence of class labels

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology
and its application in microarray studies.Biostatistics. 9 (3): 566-576.
Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn.
HUM Calculator and HUM package for R: easy-to-use software tools for multicategory receiver
operating characteristic analysis» / Bioinformatics. – 2014. – Vol. 30 (11): 1635-1636 doi:10.1093/
bioinformatics/btu086.

See Also

CalculateHUM_Ex, CalculateHUM_ROC

Examples

data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])

xdata=leukemia72
indexF=1:2
indexClass=ncol(xdata)
label=levels(xdata[,indexClass])
indexLabel=label[1:2]

out=CalculateHUM_seq(xdata,indexF,indexClass,indexLabel)

chi2.algorithm Select the subset of features

Description

This function selects the subset of features on the basis of the Chi2 discretization algorithm. The
algorithm provides the way to select numerical features while discretizing them. It is based on the
χ2 statistic, and consists of two phases of discretization. According to the value of χ2 statistic
for each pair of adjacent intervals the merging of the intervals continues until an inconsistency
rate is exceeded. Chi2 algorithms automatically determines a proper χ2 threshold that keeps the
fidelity of the original data. The nominal features must be determined as they didn’t take part in
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the discretization process but in the process of inconsistency rate calculation. In the process of
discretization the irrelevant features are removed. The results is in the form of “list”, consisting of
two fields: the processed dataset without irrelevant features and the names of the selected features.
This function is used internally to perform the classification with feature selection using the function
“classifier.loop” with argument “Chi2-algorithm” for feature selection.

Usage

chi2.algorithm(matrix,attrs.nominal,threshold)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

threshold a numeric threshold value for the inconsistency rate.

Details

This function’s main job is to select the subset of informative numerical features using the two phase
process of feature values merging according to the χ2 statistic for the pairs of adjacent intervals.
The stopping criterion of merging is the inconsistency rate of the processed dataset. See the “Value”
section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned data.frame consists of the the following fields:

data.out the processed dataset without irrelevant features (features which have been
merged into a single interval)

subset a character vector of the selected feature names

References

H. Liu and L. Yu. "Toward Integrating Feature Selection Algorithms for Classification and Cluster-
ing", IEEE Trans. on Knowledge and Data Engineering, pdf, 17(4), 491-502, 2005.

See Also

input_miss, select.process
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Examples

# example for dataset without missing values
#p1=Sys.time()
data(data_test)
# not all features to select
xdata=data_test[,c(1:6,ncol(data_test))]
# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])
attrs.nominal=numeric()
threshold=0
out=chi2.algorithm(matrix=xdata,attrs.nominal=attrs.nominal,threshold=threshold)
#Sys.time()-p1

classifier.loop Classification and classifier validation

Description

The main function for the classification and classifier validation. It performs the classification using
different classification algorithms (classifiers) with the embedded feature selection and using the
different schemes for the performance validation.
It presents the infrostructure to perform classification of the data set with two or more class la-
bels. The function calls several classification methods, including Nearest shrunken centroid ("nsc"),
Naive Bayes classifier ("nbc"), Nearest Neighbour classifier ("nn"), Multinomial Logistic Regres-
sion ("mlr"), Support Vector Machines ("svm"), Linear Discriminant Analysis ("lda"), Random
Forest ("rf"). The function calls the select.process in order to perform feature selection for clas-
sification, which helps to improve the quality of the classifier. The classifier accuracy is estimated
using the embedded validation procedures, including the Repeated random sub-sampling valida-
tion ("sub-sampling"), k-fold cross-validation ("fold-crossval") and Leave-one-out cross-validation
("leaveOneOut").

The results is in the form of “list” with the data.frame of classification results for each selected clas-
sifier “predictions”, matrix with the statistics for the frequency each feature is selected “no.selected”,
vector or matrix with the number of true classifications for each selected classifier “true.classified”.

Usage

classifier.loop(dattable,classifiers=c("svm","lda","rf","nsc"),
feature.selection=c("auc","InformationGain"),
disc.method="MDL",threshold=0.3, threshold.consis=0,
attrs.nominal=numeric(), no.feat=20,flag.feature=TRUE,
method.cross=c("leaveOneOut","sub-sampling","fold-crossval"))

Arguments

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.
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classifiers the names of the classifiers.
feature.selection

a method of feature ranking or feature selection.

disc.method a method used for feature discretization. There are three options "MDL","equal
interval width","equal frequency". The discretization options "MDL" assigned
to the minimal description length (MDL) discretization algorithm, which is a su-
pervised algorithm. The last two options refer to the unsupervized discretization
algorithms.

threshold a numeric threshold value for the correlation of feature with class to be included
in the final subset. It is used by fast correlation-based filter method (FCBF)

threshold.consis

a numeric threshold value for the inconsistency rate. It is used by Chi2 dis-
cretization algorithm.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

no.feat the maximal number of features to be selected.

flag.feature logical value; if TRUE the process of classifier construction and validation will
be repeated for each subset of features, starting with one feature and upwards.

method.cross a character value with the names of the model validation technique for assess-
ing how the classification results will generalize to an independent data set. It
includes Repeated random sub-sampling validation, k-fold cross-validation and
Leave-one-out cross-validation.

Details

This function’s main job is to perform classification with feature selection and the estimation of
classification results with the model validation techniques. See the “Value” section to this page for
more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned list consists of the the following fields:

predictions a data.frame of classification results for each selected classifier

no.selected a matrix with the statistics for each feature selection frequency

true.classified

a vector or matrix with the number of true classifications for each selected clas-
sifier
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References

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classi-
fication of tumors using gene expression data. Journal of the American Statistical Association,
97(457):77–87, 2002.

See Also

select.process, input_miss

Examples

# example for dataset without missing values
data(leukemia72_2)

# class label must be factor
leukemia72_2[,ncol(leukemia72_2)]<-as.factor(leukemia72_2[,ncol(leukemia72_2)])

class.method="svm"
method="InformationGain"
disc<-"MDL"
cross.method<-"fold-crossval"

thr=0.1
thr.cons=0.05
attrs.nominal=numeric()
max.f=10

out=classifier.loop(leukemia72_2,classifiers=class.method,
feature.selection=method,disc.method=disc,
threshold=thr, threshold.consis=thr.cons,attrs.nominal=attrs.nominal,
no.feat=max.f,flag.feature=FALSE,method.cross=cross.method)

# example for dataset with missing values
## Not run:
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}
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class.method="svm"
method="InformationGain"
disc<-"MDL"
cross.method<-"fold-crossval"

thr=0.1
thr.cons=0.05
max.f=10

out=classifier.loop(xdata,classifiers=class.method,
feature.selection=method,disc.method=disc,
threshold=thr, threshold.consis=thr.cons,attrs.nominal=attrs.nominal,
no.feat=max.f,flag.feature=FALSE,method.cross=cross.method)

## End(Not run)

compute.auc.permutation

Calculates the p-values

Description

This auxiliary function calculates the p-value of the significance of the AUC values using the per-
mutation test (for each input feature). It takes as an input the results of the AUC value calculation
using function compute.aucs.

The results is in the form of “numeric vector” with p-values for each AUC value.

Usage

compute.auc.permutation(aucs,dattable,repetitions=1000)

Arguments

aucs a numeric vector of AUC values.

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values.

repetitions the number of permutations of feature values.

Details

This auxiliary function’s main job is to calculate the p-values of the statistical significance test of
the AUC values for each input feature). See the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10.
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Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned data is the fol-
lowing:

p.values a numeric vector with the p-values for each feature AUC value

References

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186.

See Also

compute.aucs, pauclog, pauc, compute.auc.random

Examples

# example
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

auc.val=compute.aucs(dattable=data_test)
vauc<-auc.val[,"AUC"]
rep.num<-20

p.values=compute.auc.permutation(aucs=vauc,dattable=data_test,rep.num)

compute.auc.random Calculates the p-values

Description

This auxiliary function calculates the p-value of the significance of the AUC values using the com-
parison with random sample generation (for each input feature). It takes as an input the results of
the AUC value calculation using function compute.aucs.

The results is in the form of “numeric vector” with p-values for each AUC value.

Usage

compute.auc.random(aucs,dattable,repetitions=10000,correction="none")
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Arguments

aucs a numeric vector of AUC values.

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values.

repetitions the number of repetitions of random sample’ generation.

correction the method of p-value correction for multiple testing, including Bonferroni-
Holm, Bonferroni corrections or without correction.

Details

This auxiliary function’s main job is to calculate the p-values of the statistical significance test of
the AUC values for each input feature for two-class problem.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels (with two class labels).

The correction methods include the Bonferroni correction ("bonferroni") in which the p-values are
multiplied by the number of comparisons and the less conservative corrections by Bonferroni-Holm
method ("bonferroniholm"). A pass-through option ("none") is also included.

The correction methods are designed to give strong control of the family-wise error rate. See the
“Value” section to this page for more details.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned data is the fol-
lowing:

pvalues.raw a numeric vector with the corrected p-values for each feature AUC value

References

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165–1188.

See Also

compute.aucs, pauclog, pauc, compute.auc.permutation

Examples

# example
data(datasetF6)

# class label must be factor
datasetF6[,ncol(datasetF6)]<-as.factor(datasetF6[,ncol(datasetF6)])

auc.val=compute.aucs(dattable=datasetF6)
vauc<-auc.val[,"AUC"]
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cors<-"none"
rep.num<-100

pvalues.raw<-compute.auc.random(aucs=vauc,dattable=datasetF6,
repetitions=rep.num,correction=cors)

compute.aucs Ranks the features

Description

This function calculates the features weights using the AUC (Area Under the ROC Curve) val-
ues. It can handle only numerical values. This function performs two-class or multiclass AUC.
A multiclass AUC is a mean of AUCs for all combinations of the two class labels. This function
measures the worth of a feature by computing the AUC values with respect to the class.The results
is in the form of “data.frame”. In the case of two-class problem it consists of the three fields: fea-
tures (Biomarker) names, AUC values and level of the positive class. In the case of more than two
classes it consists of two fields: features (Biomarker) names, AUC values. This function is used in-
ternally to perform the classification with feature selection using the function “classifier.loop” with
argument “auc” for feature selection.

Usage

compute.aucs(dattable)

Arguments

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

Details

This function’s main job is to calculate the weights of the features according to AUC values. See
the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features must be defined
as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned data.frame con-
sists of th the following fields:

Biomarker a character vector of feature names
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AUC a numeric vector of AUC values for the features according to class

Positive class a numeric vector of positive class levels for two-class problem

References

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186.

See Also

input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

out=compute.aucs(dattable=data_test)

# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# the nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}
xdata=xdata[,-attrs.nominal]
# the nominal features are not processed
out=compute.aucs(dattable=xdata)

cost.curve Plots the RCC curve for two-class problem
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Description

This function plots the Relative Cost Curves (RCC) and calculates the corresponding Area Above
the RCC (AAC) value to estimate the classifier performance under unequal misclassification costs.
It is intended for the two-class problem, but the extension to more than two classes will be produced
later. RCC is a graphical technique for visualising the performance of binary classifiers over the full
range of possible relative misclassification costs. This curve provides helpful information to choose
the best set of classifiers or to estimate misclassification costs if those are not known precisely. Area
Above the RCC (AAC) is a scalar measure of classifier performance under unequal misclassification
costs problem. It can be reasonably used only for two-class problem.

Usage

cost.curve(data, attrs.no, pos.Class, AAC=TRUE, n=101, add=FALSE,
xlab="log2(c)",ylab="relative costs", main="RCC",lwd=2,col="black",
xlim=c(-4,4), ylim=(c(20,120)))

Arguments

data a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The function
is provided for two classes.

attrs.no a numerical value, containing the column number of the features to construct the
RCC.

pos.Class a level of the class factor to be selected as the positive class for the construction
of the RCC cost curve.

AAC logical value; if TRUE the AAC value will be calculated.
n the number of points for the construction of RCC curve (it corresponds to the

number of cost values).
add logical value; if TRUE the RCC curve can be added to the existent RCC plot.
xlab name of the X axis.
ylab name of the Y axis.
main name of the RCC plot.
lwd a positive number for line width.
col the color value for the RCC plot.
xlim the vector with two numeric values for the X axis limits, it defines the values for

log2(cost).
ylim the vector with two numeric values for the Y axis limits, it defines the values for

the relative cost value.

Details

This function’s main job is to plt the RCC curve and calculates the corresponding AAC value to
estimate the classifier performance under unequal misclassification costs.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels with two class labels.
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Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

References

Olga Montvida and Frank Klawonn Relative cost curves: An alternative to AUC and an extension
to 3-class problems,Kybernetika 50 no. 5, 647-660, 2014

See Also

compute.aucs, compute.auc.random, compute.auc.permutation,
plotRoc.curves, input_miss

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

xllim<--4
xulim<-4
yllim<-30
yulim<-110

attrs.no=c(1,9)
pos.Class<-levels(data_test[,ncol(data_test)])[1]
add.legend<-TRUE

aacs<-rep(0,length(attrs.no))
color<-c(1:length(attrs.no))

aacs[1] <- cost.curve(data_test, attrs.no[1], pos.Class,col=color[1],add=FALSE,
xlim=c(xllim,xulim),ylim=c(yllim,yulim))

if(length(attrs.no)>1){
for(i in 2:length(attrs.no)){

aacs[i]<- cost.curve(data_test, attrs.no[i], pos.Class,
col=color[i],add=TRUE,xlim=c(xllim,xulim))

}
}

if(add.legend){
legt <- colnames(data_test)[attrs.no]

for(i in 1:length(attrs.no)){
legt[i] <- paste(legt[i],", AAC=",round(1000*aacs[i])/1000,sep="")

}
legend("bottomright",legend=legt,col=color,lwd=2)
}
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datasetF6 simulated data

Description

This data file consists of six simulated predictors or variables with three class categories. For each
class category the values are independently generated from the normal distribution with the mean
µ1, µ2 and µ3 and the variances held at unity. The means are varied such that the problems range
from near-separable problems, to near-random.

Usage

datasetF6

Format

A data.frame containing 300 observations of six variables.

Source

Landgrebe T, Duin R (2006) A simplified extension of the Area under the ROC to the multiclass
domain. In: Proceedings 17th Annual Symposium of the Pattern Recognition Association of South
Africa. PRASA, pp. 241–245.

See Also

data_test, leukemia72, leukemia72_2, leukemia_miss

Examples

# load the dataset
data(datasetF6)

data_test simulated data

Description

This data file consists of 300 objects with 10 features. The features x1-x5 are informative and
define the cluster structure of the dataset. The clusters are generated in the two-dimensional space
x1-x2. The values of the features x3-x5 are identically generated as for x2. Features values x1-
x5 are normally distributed values with the same standard deviation and different mean values.
Features x6-x10 are random variables uniformly distributed in the interval [0, 1] and present the
uninformative features.
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Usage

data_test

Format

A data.frame containing 300 observations of 11 variables and class with three labels.

Source

Landgrebe T, Duin R (2006) A simplified extension of the Area under the ROC to the multiclass
domain. In: Proceedings 17th Annual Symposium of the Pattern Recognition Association of South
Africa. PRASA, pp. 241–245.

See Also

leukemia72, datasetF6, leukemia72_2, leukemia_miss

Examples

# load the dataset
data(data_test)

generate.data.miss Generate the dataset with missing values

Description

The function for the generation the dataset with missing values from the input dataset with all
the values. It is mainly intended for the testing purposes. The results is in the form of “data.frame”
which corresponds to the input data.frame or matrix, where missing values are inserted. The percent
of missing values is supplied as the input parameters. The processed dataset can be used in the
algorithms for missing value imputation “input_miss” or for any other purposes.

Usage

generate.data.miss(data,percent=5,filename=NULL)

Arguments

data a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. This data set
has not missing values

percent a numerical value for the percent of the missing values to be inserted into the
dataset.

filename a character name of the output file to save the dataset with missing values.
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Details

This function’s main job is to generate the dataset with missing values from the input dataset with
all the values. See the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

A returned data.frame corresponds to the input dataset with inserted missing values.

References

McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, Simon R. Methods for assessing repro-
ducibility of clustering patterns observed in analyses of microarray data. Bioinformatics. 2002
Nov;18(11):1462-9.

See Also

input_miss, select.process, classifier.loop

Examples

# example

data(leukemia72_2)

percent =5
f.name=NULL #file name to include
out=generate.data.miss(data=leukemia72_2,percent=percent,filename=f.name)

input_miss Process the dataset with missing values

Description

The main function for handling with missing values. It performs the missing values imputation
using two different approachs: imputation with mean values and using the nearest neighbour algo-
rithm. It can handle both numerical and nominal values. The function also delete the features with
the number of missing values more then specified threshold. The results is in the form of “list”
with the processed dataset and the logical value, which indicates the success or failure of process-
ing. The processed dataset can be used in the algorithms for feature selection “select.process” and
classification “classifier.loop”.
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Usage

input_miss(matrix,method.subst="near.value",
attrs.nominal=numeric(),delThre=0.2)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

method.subst a method of missing value processing. There are two realized methods: substi-
tution with mean value (’mean.value’) and nearest neighbour algorithm
(’near.value’).

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

delThre the minimal threshold for the deletion of features with missing values. It is in
the interval [0,1], where for delThre=0 all features having at least one missing
value will be deleted.

Details

This function’s main job is to handle the missing values in the dataset. See the “Value” section to
this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data are provided with reasonable number of missing values that is preprocessed with one of
the imputing methods.

A returned list consists of the the following fields:

data a processed dataset

flag.miss logical value; if TRUE the processing is successful, if FALSE the input dataset
is returned without processing.

References

McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, Simon R. Methods for assessing repro-
ducibility of clustering patterns observed in analyses of microarray data. Bioinformatics. 2002
Nov;18(11):1462-9.

See Also

select.process, classifier.loop
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Examples

# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}

leukemia72 desease data

Description

Leukemia dataset includes the bone marrow samples obtained from acute leukemia patients at the
time of diagnosis: 25 acute myeloid leukemia (AML) samples; 9 T-lineage acute lymphoblastic
leukemia (ALL) samples; and 38 B-lineage ALL samples. After preprocessing, the 100 genes with
the largest variation across samples are selected.

Usage

leukemia72

Format

A data.frame containing 72 observations of 101 variables: 100 features and class with three diag-
nosis: 38 B-lineage ALL, 9 T-lineage ALL and 25 AML.

Source

Handl J, Knowles J, Kell DB, Computational cluster validation in post-genomic data analysis,
Bioinformatics 21:3201-3212, 2005.

See Also

data_test, datasetF6, leukemia72_2, leukemia_miss
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Examples

# load the dataset
data(leukemia72)
# X95735_at
with(leukemia72, by(X95735_at,Class,mean))

# M27891_at
with(leukemia72,tapply(M27891_at, Class, FUN = mean))
with(leukemia72, table(M27891_at=ifelse(M27891_at<=mean(M27891_at), "1", "2"), Class))

leukemia72_2 desease data

Description

Leukemia dataset includes the bone marrow samples obtained from acute leukemia patients at the
time of diagnosis: 25 acute myeloid leukemia (AML) samples; 9 T-lineage acute lymphoblastic
leukemia (ALL) samples; and 38 B-lineage ALL samples. After preprocessing, the 100 genes with
the largest variation across samples are selected.

Usage

leukemia72_2

Format

A data.frame containing 72 observations of 101 variables: 100 features and class with two diagno-
sis: 47 ALL and 25 AML).

Source

Handl J, Knowles J, Kell DB, Computational cluster validation in post-genomic data analysis,
Bioinformatics 21:3201-3212, 2005.

See Also

data_test, datasetF6, leukemia72, leukemia_miss

Examples

# load the dataset
data(leukemia72_2)
# X95735_at
with(leukemia72_2, by(X95735_at,Class,mean))

# M27891_at
with(leukemia72_2,tapply(M27891_at, Class, FUN = mean))
with(leukemia72_2, table(M27891_at=ifelse(M27891_at<=mean(M27891_at), "1", "2"), Class))
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leukemia_miss desease data

Description

Leukemia dataset includes the bone marrow samples obtained from acute leukemia patients at the
time of diagnosis: 25 acute myeloid leukemia (AML) samples; 9 T-lineage acute lymphoblastic
leukemia (ALL) samples; and 38 B-lineage ALL samples. After preprocessing, the 100 genes with
the largest variation across samples are selected. This dataset is the same as leukemia72 with the 5
percent of missing values.

Usage

leukemia_miss

Format

A data.frame containing 72 observations of 101 variables: 100 features and class with three diag-
nosis: 38 B-lineage ALL, 9 T-lineage ALL and 25 AML. It has 5 percent missing values.

Source

Handl J, Knowles J, Kell DB, Computational cluster validation in post-genomic data analysis,
Bioinformatics 21:3201-3212, 2005.

See Also

data_test, datasetF6, leukemia72, leukemia72_2

Examples

# load the dataset
data(leukemia_miss)
# X95735_at
with(leukemia_miss, by(X95735_at,Class,mean,na.rm=TRUE))

# M27891_at
with(leukemia_miss,tapply(M27891_at, Class, FUN = mean,na.rm=TRUE))
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pauc Calculates the p-values

Description

This auxiliary function calculates the p-value of the statistical significance test of the difference of
samples from two classes using AUC values (for each input feature). It takes as an input the results
of the AUC value calculation using function compute.aucs. It can be reasonably used only for
two-class problem. The results is in the form of “numeric vector” with p-values for each features.

Usage

pauc(auc,n=100,n.plus=0.5,labels=numeric(),pos=numeric())

Arguments

auc a numeric vector of AUC values.

n the whole number of observations for the test.

n.plus the number of cases in the sample with the positive class.

labels the factor with the class labels.

pos the numeric vector with the level of the positive class.

Details

This auxiliary function’s main job is to calculate the p-values of the statistical significance test of
two samples, defined by negative and positive class labels, i.e. two-class problem. See the “Value”
section to this page for more details.

Value

A returned data consists is the following:

pauc a numeric vector with the p-values for each feature

References

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186.

See Also

compute.aucs, pauclog
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Examples

# example
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

auc.val=compute.aucs(dattable=data_test)
vauc<-auc.val[,"AUC"]
val=levels(data_test[,ncol(data_test)])

if(length(val)==2)
{
pos=auc.val[,"Positive class"]
paucv<-pauc(auc=vauc,labels=data_test[,ncol(data_test)],pos=pos)

}else{
num.size=100
num.prop=0.5
paucv<-pauc(auc=vauc,n=num.size,n.plus=num.prop)

}

pauclog Calculates the p-values

Description

This auxiliary function calculates the logarithm of p-values of the statistical significance test of the
difference of samples from two classes using AUC values (for each input feature). It takes as an
input the results of the AUC value calculation by the function compute.aucs. It can be reasonably
used only for two-class problem. The results is in the form of “numeric vector” with the logarithms
of the p-values for each features.

Usage

pauclog(auc,n=100,n.plus=0.5,labels=numeric(),pos=numeric())

Arguments

auc a numeric vector of AUC values.
n the whole number of observations for the test.
n.plus the number of cases in the sample with the positive class.
labels the factor with the class labels.
pos the numeric vector with the level of the positive class.

Details

This auxiliary function’s main job is to calculate the logarithm of p-values of the statistical signifi-
cance test of two samples, defined by negative and positive class labels, i.e. two-class problem. See
the “Value” section to this page for more details.
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Value

A returned data consists is the following:

pauclog a numeric vector with the logarithm of p-value for each feature

References

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186.

See Also

compute.aucs, pauc

Examples

# example
data(datasetF6)

# class label must be factor
datasetF6[,ncol(datasetF6)]<-as.factor(datasetF6[,ncol(datasetF6)])

auc.val=compute.aucs(dattable=datasetF6)
vauc<-auc.val[,"AUC"]
val=levels(datasetF6[,ncol(datasetF6)])

if(length(val)==2)
{
pos=auc.val[,"Positive class"]
paucv<-pauclog(auc=vauc,labels=datasetF6[,ncol(datasetF6)],pos=pos)

}else{
num.size=100
num.prop=0.5
paucv<-pauclog(auc=vauc,n=num.size,n.plus=num.prop)

}

plotClass.result Plots the results of classifier validation schemes

Description

This function plots the barplots and boxplots, which help in estimation of the results of classifiers’
validation, performed by different validation models. It must be called after the performing the
classification validation with function classifier.loop.

Usage

plotClass.result(true.classified, cross.method, class.method,
flag.feature, feat.num)
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Arguments

true.classified

a vector or matrix of classification results for one or several classifiers and
one or several feature sets. The matrix is the output value of the function
classifier.loop.

cross.method a character value with the names of the model validation technique for assess-
ing how the classification results will generalize to an independent data set. It
includes Repeated random sub-sampling validation, k-fold cross-validation and
Leave-one-out cross-validation.

class.method the names of the classifiers.

flag.feature logical value; if TRUE the process of classifier construction and validation will
be repeated for each subset of features, starting with one feature and upwards.

feat.num the maximal number of features to be selected.

Details

This function’s main job is to plot the barplots and boxplots to visually estimate the results of
classifiers’ validation.

Value

The results is visualization of the plot .

References

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classi-
fication of tumors using gene expression data. Journal of the American Statistical Association,
97(457):77–87, 2002.

See Also

select.process, classifier.loop

Examples

# example for dataset without missing values

data(leukemia72_2)

# class label must be factor
leukemia72_2[,ncol(leukemia72_2)]<-as.factor(leukemia72_2[,ncol(leukemia72_2)])

class.method=c("svm","nn")
method="InformationGain"
disc<-"MDL"
cross.method<-"fold-crossval"

flag.feature=TRUE
thr=0.1
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thr.cons=0.05
attrs.nominal=numeric()
max.f=10

out=classifier.loop(leukemia72_2,classifiers=class.method,
feature.selection=method,disc.method=disc,
threshold=thr, threshold.consis=thr.cons,attrs.nominal=attrs.nominal,
no.feat=max.f,flag.feature=flag.feature,method.cross=cross.method)

plotClass.result(out$true.classified, cross.method, class.method, flag.feature, max.f)

# example for dataset with missing values
## Not run:
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}

class.method=c("svm","nn")
method="InformationGain"
disc<-"MDL"
cross.method<-"fold-crossval"

flag.feature=TRUE
thr=0.1
thr.cons=0.05
max.f=10

out=classifier.loop(xdata,classifiers=class.method,
feature.selection=method,disc.method=disc,
threshold=thr, threshold.consis=thr.cons,attrs.nominal=attrs.nominal,
no.feat=max.f,flag.feature=flag.feature,method.cross=cross.method)

plotClass.result(out$true.classified, cross.method, class.method, flag.feature, max.f)

## End(Not run)

plotRoc.curves Plots the ROC curve for two-class problem
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Description

This function plots the ROC curve for the two-class problem.

Usage

plotRoc.curves(dattable,file.name=NULL,colours=NULL,ltys=NULL,
add.legend=F,curve.names=NULL,include.auc=F,xaxis="",yaxis="",
line.width=2,headline="",ispercent=F)

Arguments

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values.

file.name the file name to save the plot.

colours the color values for each plot if more than one feature or one color value in the
case of one feature.

ltys the line type values for each plot if more than one feature or one line type in the
case of one feature.

add.legend logical value; if TRUE the legend will be plotted at the bottom righ.

curve.names a character value or vector in the case of more than one feature with curve names
to be used in the legend.

include.auc logical value; if TRUE the AUC value will be included in the legend .

xaxis character value with the name of X axis.

yaxis character value with the name of Y axis.

line.width a positive number for line width.

headline the character value with the name of the plot.

ispercent logical value; if TRUE the true positive and false positive values of the plot are
in the percents.

Details

This function’s main job is to plot the ROC curve for one or more features with the possibility to
include the AUC values in the legend.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels with two class labels.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

References

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186.
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See Also

compute.aucs, pauclog, pauc, compute.auc.permutation, input_miss

Examples

# example for dataset without missing values
data(leukemia72_2)

# class label must be factor
leukemia72_2[,ncol(leukemia72_2)]<-as.factor(leukemia72_2[,ncol(leukemia72_2)])

add.legend<-TRUE
include.auc<-TRUE

attrs.no=c(1,2)
xdata=leukemia72_2[,c(attrs.no,ncol(leukemia72_2))]
plotRoc.curves(dattable=xdata,add.legend=add.legend,include.auc=include.auc)

ProcessData Select the subset of features

Description

The auxiliary function performs the discretization of the numerical features and is called from
the several functions for feature selection. The discretization options include minimal description
length (MDL), equal frequency and equal interval width methods. The results is in the form of “list”,
consisting of two fields: the processed dataset and the column numbers of the features. When the
value of the input parameter “flag”=TRUE the second field will include the column numbers of the
features, which have more than single interval after discretization.

Usage

ProcessData(matrix,disc.method,attrs.nominal,flag=FALSE)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

disc.method a method used for feature discretization.The discretization options include min-
imal description length (MDL), equal frequency and equal interval width meth-
ods.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

flag a binary logical value. If equals TRUE the output list will contain the processed
dataset with the features, having more than one interval after discretization to-
gether with their names. In the case of FALSE value the processed dataset with
all the features will be returned.
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Details

This auxiliary function’s main job is to descritize the numerical features using the one of the dis-
cretization methods. See the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned list consists of the the following fields:

m3 a processed dataset

sel.feature a numeric vector with the column numbers of the features, having more than one
interval value (when “flag”=TRUE). If “flag”=FALSE it return all the column
numbers of the dataset.

References

H. Liu, F. Hussain, C. L. Tan, and M. Dash, "Discretization: An enabling technique," Data Mining
and Knowledge Discovery, Vol. 6, No. 4, 2002, pp. 393-423.

See Also

select.inf.gain, select.inf.symm, select.inf.chi2,
select.fast.filter, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

disc<-"MDL"
attrs.nominal=numeric()
flag=FALSE
out=ProcessData(matrix=data_test,disc.method=disc,
attrs.nominal=attrs.nominal,flag=flag)
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select.cfs Select the subset of features

Description

This function selects the subset of features using the best first search strategy on the basis of cor-
relation measure (CFS). CFS evaluates a subset of features by considering the individual predictive
ability of each feature along with the degree of redundancy between them. It can handle both nu-
merical and nominal values. The results is in the form of “data.frame”, consisting of the following
fields: features (Biomarker) names and the positions of the features in the dataset. This function
is used internally to perform the classification with feature selection using the function “classi-
fier.loop” with argument “CFS” for feature selection. The variable “Index” of the data.frame is
passed to the classification function.

Usage

select.cfs(matrix)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

Details

This function’s main job is to select the subset of informative features according to best first search
strategy using the correlation measure (informative theoretic measure). The measure consideres the
individual predictive ability of each feature along with the degree of redundancy between them. See
the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned list consists of
the the following fields:

Biomarker a character vector of feature names

Index a numerical vector of the positions of the features in the dataset
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References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])
out=select.cfs(matrix=data_test)

select.fast.filter Select the subset of features

Description

This function selects the subset of features on the basis of the fast correlation-based filter method
(FCBF). It can handle both numerical and nominal values. At first it performs the discretization of
the numerical features values, according to several optional discretization methods using the func-
tion ProcessData. A fast filter can identify relevant features as well as redundancy among relevant
features without pairwise correlation analysis. The overall complexity of FCBF is O(MN logN),
where M - number of samples, N - number of features.The results is in the form of “data.frame”,
consisting of the features (Biomarker) names, values of the information gain and the positions of
the features in the dataset. The information gain value is the correlation between the features and
the class. This function is used internally to perform the classification with feature selection using
the function “classifier.loop” with argument “FastFilter” for feature selection. The variable “Num-
berFeature” of the data.frame is passed to the classification function.

Usage

select.fast.filter(matrix,disc.method,threshold,attrs.nominal)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

disc.method a method used for feature discretization.The discretization options include min-
imal description length (MDL), equal frequency and equal interval width meth-
ods.
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threshold a numeric threshold value for the correlation of feature with class to be included
in the final subset.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

Details

This function’s main job is to select the subset of informative features according to correlation
between features and class, and between features themselves. See the “Value” section to this page
for more details. Before starting it calls the ProcessData function to make the discretization of
numerical features.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned data.frame consists of the the following fields:

Biomarker a character vector of feature names
Information.Gain

a numeric vector of information gain values for the features according to class

NumberFeature a numerical vector of the positions of the features in the dataset

References

L. Yu and H. Liu. "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter
Solution". In Proceedings of The Twentieth International Conference on Machine Leaning (ICML-
03), Washington, D.C. pp. 856-863. August 21-24, 2003.

See Also

ProcessData, input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])
disc<-"MDL"
threshold=0.2
attrs.nominal=numeric()
out=select.fast.filter(data_test, disc.method=disc, threshold=threshold,
attrs.nominal=attrs.nominal)
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# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}
disc<-"MDL"
threshold=0.2
out=select.fast.filter(xdata, disc.method=disc, threshold=threshold,
attrs.nominal=attrs.nominal)

select.forward.Corr Select the subset of features

Description

This function selects the subset of features using the forward search strategy on the basis of corre-
lation measure (CFS algorithm with forward search). CFS evaluates a subset of features by consid-
ering the individual predictive ability of each feature along with the degree of redundancy between
them. It can handle both numerical and nominal values. At the beginning the discretization of
the numerical features values is performed using the function ProcessData. At the first step of
the method the one-feature subset is selected according to its informative score, which takes into
account the average feature to class correlation and the average feature to feature correlation. In
the following steps the subset is incrementally extended according to the forward search strategy
until the stopping criterion is met. The result is in the form of character vector with the names of the
selected features. This function is used internally to perform the classification with feature selection
using the function “classifier.loop”.

Usage

select.forward.Corr(matrix,disc.method,attrs.nominal)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.
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disc.method a method used for feature discretization.The discretization options include min-
imal description length (MDL), equal frequency and equal interval width meth-
ods.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

Details

This function’s main job is to select the subset of informative features according to forward selection
strategy using the correlation measure (informative theoretic measure). The measure consideres the
individual predictive ability of each feature along with the degree of redundancy between them. See
the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned value is

subset a character vector of the names of selected features

References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])
disc<-"MDL"
attrs.nominal=numeric()
out=select.forward.Corr(matrix=data_test,disc.method=disc,
attrs.nominal=attrs.nominal)



select.forward.wrapper 51

select.forward.wrapper

Select the subset of features

Description

This function selects the subset of features using the wrapper method with decision tree algorithm
and forward search strategy. It can handle both numerical and nominal values. The wrapper method
makes use of the classification algorithm in order to estimate the quality measure of the feature
subset. The method uses the built-in cross-validation procedure to estimate the accuracy of clas-
sification for the feature subset. At the first step of the method the one-feature subset is selected
according to the quality measure. In the following steps the subset is incrementally extended ac-
cording to the forward search strategy until the stopping criterion is met. The result is in the form of
character vector with the names of the selected features. This function is used internally to perform
the classification with feature selection using the function “classifier.loop” with argument “CorrSF”
for feature selection.

Usage

select.forward.wrapper(dattable)

Arguments

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

Details

This function’s main job is to select the subset of informative features according to forward selection
strategy using the wrapper method. The decision tree is used as the classifier to estimate the quality
of the feature subset. See the “Value” section to this page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned value is

subset a character vector of the names of selected features
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References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

out=select.forward.wrapper(dattable=data_test)

select.inf.chi2 Ranks the features

Description

This function calculates the features weights using the chi-squared (χ2) statistic and performs the
ranking of the features. It can handle both numerical and nominal values. At first it performs the
discretization of the numerical features values, according to several optional discretization methods
using the function ProcessData. This function measures the worth of a feature by computing
the value of the χ2 statistic with respect to the class.The results is in the form of “data.frame”,
consisting of the following fields: features (Biomarker) names, values of the chi-squared statistic
and the positions of the features in the dataset. The features in the data.frame are sorted according
to the chi-squared statistic values. This function is used internally to perform the classification
with feature selection using the function “classifier.loop” with argument “Chi-square” for feature
selection. The variable “NumberFeature” of the data.frame is passed to the classification function.

Usage

select.inf.chi2(matrix,disc.method,attrs.nominal)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

disc.method a method used for feature discretization.The discretization options include min-
imal description length (MDL), equal frequency and equal interval width meth-
ods.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.
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Details

This function’s main job is to rank the features according to chi-squared statistic. See the “Value”
section to this page for more details. Before starting it calls the ProcessData function to make the
discretization of numerical features.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned data.frame con-
sists of the the following fields:

Biomarker a character vector of feature names

ChiSquare a numeric vector of chi-squared values for the features according to class

NumberFeature a numerical vector of the positions of the features in the dataset

References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

ProcessData, input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])
disc<-"equal interval width"
attrs.nominal=numeric()
out=select.inf.chi2(data_test,disc.method=disc,attrs.nominal=attrs.nominal)

# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])
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delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}
disc<-"equal interval width"
out=select.inf.chi2(xdata,disc.method=disc,attrs.nominal=attrs.nominal)

select.inf.gain Ranks the features

Description

This function calculates the features weights using the Information Gain criterion measure and
performs the ranking of the features (in decreasing order of Information Gain criteria). It can handle
both numerical and nominal values. At first it performs the discretization of the numerical features
values, according to several optional discretization methods using the function ProcessData. This
function measures the worth of a feature by computing the Information Gain criterion measure with
respect to the class.The results is in the form of “data.frame”, consisting of the following fields:
features (Biomarker) names, values of the Information Gain criterion measure and the positions of
the features in the dataset. The features in the data.frame are sorted according to the Information
Gain uncertainty criterion values. This function is used internally to perform the classification with
feature selection using the function “classifier.loop” with argument “InformationGain” for feature
selection. The variable “NumberFeature” of the data.frame is passed to the classification function.

Usage

select.inf.gain(matrix,disc.method,attrs.nominal)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

disc.method a method used for feature discretization.The discretization options include min-
imal description length (MDL), equal frequency and equal interval width meth-
ods.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

Details

This function’s main job is to rank the features according to Information Gain criterion. See the
“Value” section to this page for more details. Before starting it calls the ProcessData function to
make the discretization of numerical features.
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Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned list consists of
the the following fields:

Biomarker a character vector of feature names
Information.Gain

a numeric vector of Information gain values for the features

NumberFeature a numerical vector of the positions of the features in the dataset

References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

ProcessData, input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])
disc<-"equal interval width"
attrs.nominal=numeric()
out=select.inf.gain(data_test,disc.method=disc,attrs.nominal=attrs.nominal)

# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
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{
xdata=out$data

}
disc<-"equal interval width"
out=select.inf.gain(xdata,disc.method=disc,attrs.nominal=attrs.nominal)

select.inf.symm Ranks the features

Description

This function calculates the features weights using the Symmetrical uncertainty criterion measure
and performs the ranking of the features (in decreasing order of Symmetrical uncertainty crite-
ria). It can handle both numerical and nominal values. At first it performs the discretization of the
numerical features values, according to several optional discretization methods using the function
ProcessData. This function measures the worth of a feature by computing the Symmetrical un-
certainty criterion measure with respect to the class.The results is in the form of “data.frame”, con-
sisting of the following fields: features (Biomarker) names, values of the Symmetrical uncertainty
criterion measure and the positions of the features in the dataset. The features in the data.frame are
sorted according to the Symmetrical uncertainty criterion values. This function is used internally to
perform the classification with feature selection using the function “classifier.loop” with argument
“symmetrical.uncertainty” for feature selection. The variable “NumberFeature” of the data.frame
is passed to the classification function.

Usage

select.inf.symm(matrix,disc.method,attrs.nominal)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

disc.method a method used for feature discretization.The discretization options include min-
imal description length (MDL), equal frequency and equal interval width meth-
ods.

attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

Details

This function’s main job is to rank the features according to Symmetrical uncertainty criterion. See
the “Value” section to this page for more details. Before starting it calls the ProcessData function
to make the discretization of numerical features.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.
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Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned data.frame con-
sists of the the following fields:

Biomarker a character vector of feature names
SymmetricalUncertainty

a numeric vector of Symmetrical uncertainty criterion values for the features
according to class

NumberFeature a numerical vector of the positions of the features in the dataset

References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

ProcessData, input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])
disc<-"equal interval width"
attrs.nominal=numeric()
out=select.inf.symm(data_test,disc.method=disc,attrs.nominal=attrs.nominal)

# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}
disc<-"equal interval width"
out=select.inf.symm(xdata,disc.method=disc,attrs.nominal=attrs.nominal)
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select.process Feature ranking and feature selection

Description

The main function for the feature ranking or feature subset selection. It can handle both numerical
and nominal values. It presents the infrastructure to perform the feature ranking or feature selection
for the data set with two or more class labels. The function calls several feature ranking methods
with different quality measures, including AUC values (functions compute.aucs), information gain
(function select.inf.gain), symmetrical uncertainty (function select.inf.symm), chi-squared
(χ2) statistic (function select.inf.chi2). It also calls the number of feature selection methods,
including fast correlation-based filter method (FCBF) (function select.fast.filter), Chi2 dis-
cretization algorithm (function chi2.algorithm), CFS algorithm with forward search (function
select.forward.Corr), wrapper method with decision tree algorithm and forward search strategy
(function select.forward.wrapper). The results is in the form of “numeric vector” with the col-
umn numbers of the selected features for features selection algorithms and ordered features’ column
numbers according to the criteria for feature ranking. The number of features can be limited to the
“max.no.features” , which is the function input parameter. The output of the function is used in
function “classifier.loop” in the process of classification.

Usage

select.process(dattable,method="InformationGain",disc.method="MDL",
threshold=0.2,threshold.consis=0.05,attrs.nominal=numeric(),
max.no.features=10)

Arguments

dattable a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

method a method of feature ranking or feature selection. There are 6 methods for
feature ranking ("auc", "HUM", "Chi-square", "InformationGain", "symmet-
rical.uncertainty", "Relief") and 4 methods for feature selection ("FastFilter",
"CFS", "CorrSF", "Chi2-algorithm")

disc.method a method used for feature discretization. There are three options "MDL","equal
interval width","equal frequency". The discretization options "MDL" assigned
to the minimal description length (MDL) discretization algorithm, which is a su-
pervised algorithm. The last two options refer to the unsupervized discretization
algorithms.

threshold a numeric threshold value for the correlation of feature with class to be included
in the final subset. It is used by fast correlation-based filter method (FCBF)

threshold.consis

a numeric threshold value for the inconsistency rate. It is used by Chi2 dis-
cretization algorithm.
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attrs.nominal a numerical vector, containing the column numbers of the nominal features,
selected for the analysis.

max.no.features

the maximal number of features to be selected or ranked.

Details

This function’s main job is to present the infrostructure to perform the feature ranking or feature
selection for the data set with two or more class labels. See the “Value” section to this page for
more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss.

A returned value is

sel.feat a vector of column numbers of the selected features for features selection al-
gorithms and ordered features’ column numbers according to the criteria for
feature ranking

References

H. Liu and L. Yu. "Toward Integrating Feature Selection Algorithms for Classification and Cluster-
ing", IEEE Trans. on Knowledge and Data Engineering, pdf, 17(4), 491-502, 2005.
L. Yu and H. Liu. "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter
Solution". In Proceedings of The Twentieth International Conference on Machine Leaning (ICML-
03), Washington, D.C. pp. 856-863. August 21-24, 2003.

See Also

select.inf.gain, select.inf.symm, select.inf.chi2,
select.fast.filter, chi2.algorithm, select.forward.Corr,
select.forward.wrapper, input_miss

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

method="InformationGain"
disc<-"MDL"
thr=0.1
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thr.cons=0.05
attrs.nominal=numeric()
max.f=15

out=select.process(data_test,method=method,disc.method=disc,
threshold=thr, threshold.consis=thr.cons,attrs.nominal=attrs.nominal,
max.no.features=max.f)

# example for dataset with missing values
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}

method="InformationGain"
disc<-"MDL"
thr=0.1
thr.cons=0.05
max.f=15

out=select.process(xdata,method=method,disc.method=disc,
threshold=thr, threshold.consis=thr.cons,attrs.nominal=attrs.nominal,
max.no.features=max.f)

select.relief Ranks the features

Description

This function calculates the features weights basing on a distance between instances. It can handle
only numeric. The results is in the form of “data.frame”, consisting of the following fields: features
(Biomarker) names, weights and the positions of the features in the dataset. The features in the
data.frame are sorted according to the weight values. This function is used internally to perform the
classification with feature selection using the function “classifier.loop” with argument “Chi-square”
for feature selection. The variable “NumberFeature” of the data.frame is passed to the classification
function.
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Usage

select.relief(matrix)

Arguments

matrix a dataset, a matrix of feature values for several cases, the last column is for the
class labels. Class labels could be numerical or character values. The maximal
number of classes is ten.

Details

This function’s main job is to rank the features according to weights. See the “Value” section to this
page for more details.

Data can be provided in matrix form, where the rows correspond to cases with feature values and
class label. The columns contain the values of individual features and the last column must contain
class labels. The maximal number of class labels equals 10. The class label features and all the
nominal features must be defined as factors.

Value

The data can be provided with reasonable number of missing values that must be at first prepro-
cessed with one of the imputing methods in the function input_miss. A returned data.frame con-
sists of the the following fields:

Biomarker a character vector of feature names

Weights a numeric vector of weight values for the features

NumberFeature a numerical vector of the positions of the features in the dataset

References

Y. Wang, I.V. Tetko, M.A. Hall, E. Frank, A. Facius, K.F.X. Mayer, and H.W. Mewes, "Gene
Selection from Microarray Data for Cancer Classification—A Machine Learning Approach," Com-
putational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.

See Also

input_miss, select.process

Examples

# example for dataset without missing values
data(data_test)

# class label must be factor
data_test[,ncol(data_test)]<-as.factor(data_test[,ncol(data_test)])

out=select.relief(data_test)

# example for dataset with missing values
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## Not run:
data(leukemia_miss)
xdata=leukemia_miss

# class label must be factor
xdata[,ncol(xdata)]<-as.factor(xdata[,ncol(xdata)])

# nominal features must be factors
attrs.nominal=101
xdata[,attrs.nominal]<-as.factor(xdata[,attrs.nominal])

delThre=0.2
out=input_miss(xdata,"mean.value",attrs.nominal,delThre)
if(out$flag.miss)
{
xdata=out$data

}
out=select.relief(xdata)

## End(Not run)
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