Package ‘BFI’

April 27, 2024
Type Package
Title Bayesian Federated Inference
Version 1.1.4
Date/Publication 2024-04-27 18:20:11 UTC

Author Hassan Pazira [aut, cre] (<https://orcid.org/0000-0002-4266-6877>),
Emanuele Massa [aut] (<https://orcid.org/0000-0001-5715-2572>),
Marianne A. Jonker [aut] (<https://orcid.org/0000-0003-0134-8482>)

Maintainer Hassan Pazira <hassan.pazira@radboudumc.nl>

Description The Bayesian Federated Inference ('BFI') method combines inference results
obtained from local data sets in the separate centers. In this version of the package,
the 'BFI' methodology is programmed for linear and logistic regression models;
see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>.

License MIT + file LICENSE

URL https://hassanpazira.github.io/BFI/
Encoding UTF-8

Suggests knitr, rmarkdown, roxygen?2, spelling, testthat (>= 3.0.0)
VignetteBuilder knitr

Depends R (>=2.10)

LazyData true

Imports devtools, stats

Config/testthat/edition 3

RoxygenNote 7.3.1

Language en-US

NeedsCompilation no

Repository CRAN

https://orcid.org/0000-0002-4266-6877
https://orcid.org/0000-0001-5715-2572
https://orcid.org/0000-0003-0134-8482
https://doi.org/10.1002/sim.10072
https://hassanpazira.github.io/BFI/

2 BFI-package

R topics documented:

BFI-package e e 2
b . . e 3
INV.PIIOL.COV . . o v vttt i et e e e e e e e e e e e e e 9
MAP.eStimation e e e e e 13
NUISES « « o o o e e e e e e e e 16
summary.bfi e e e 17
TraUMA oot e e e e e e e 19

Index 21

BFI-package Bayesian Federated Inference
Description

The Bayesian Federated Inference method combines inference results from different (medical) cen-
ters without sharing the data. In this version of the package, the user can fit models specifying
Gaussian and Binomial (Logistic) families. The package will be updated with more models soon.

Details
Package: BFI
Type: Package
Version: 1.14
Date/Publication: 2023-07-16
License: GPL (>=2)

MAP.estimation and bfi are the main functions. All other functions are utility functions.

Some examples are provided in the vignettes accompanying this package in order to show how
the package can be applied to real data. The vignettes can be found on the package website at
https://hassanpazira.github.io/BFI/ or from within R once the package has been installed,
e.g., viavignette("BFI", package = "BFI").

Author(s)

Hassan Pazira, Emanuele Massa, Marianne A. Jonker
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimat-
ing statistical models based on non-shared multicenter data sets, Statistics in Medicine, 1-18.
<https://doi.org/10.1002/sim.10072>

https://hassanpazira.github.io/BFI/

bfi

bfi

Bayesian Federated Inference

Description

bfi function can be used (in the central server) to combine inference results from separate data sets
(without combining the data) to approximate what would have been inferred had the data sets been
merged. For now the function can handle linear and logistic regression models, but code for more
models will be available in the near future. bfi command

Usage

bfi(theta_hats

strat_par =

Arguments

theta_hats

A_hats

Lambda

stratified

strat_par

center_spec

= NULL, A_hats, Lambda, stratified = FALSE,
NULL, center_spec = NULL)

a list of L vectors of the maximum a posteriori (MAP) estimates of the model
parameters in the L centers. These vectors must have equal dimensions. See
‘Details’.

a list of L (minus) curvature matrices for L centers. These matrices must have
equal dimensions. See ‘Details’.

alist of L 4+ 1 matrices. The k& matrix is the chosen inverse variance-covariance
matrix of the Gaussian distribution that is used as prior distribution in center k,
where k = 1,2, ..., L. The last matrix is the chosen variance-covariance matrix
for the Gaussian prior of the (fictive) combined data set. If stratified = FALSE,
all L 4+ 1 matrices must have equal dimensions. While, if stratified = TRUE,
the first L matrices must have equal dimensions and the last matrix should have
a different (greater) dimention than the others. See ‘Details’.

logical flag for performing the stratified analysis. If stratified = TRUE, the
parameter(s) selected in the strat_par argument are allowed to be different
across centers, except when the argument center_spec is not NULL. Default is
stratified = FALSE. See ‘Details’ and ‘Examples’.

a one- or two-element integer vector for indicating the stratification parame-
ter(s). The values 1 and/or 2 are/is used to indicate that the “intercept” and/or
“sigma2” are allowed to vary, respectively. This argument is used only when
stratified = TRUE and center_spec = NULL. Default is strat_par = NULL,
but if stratified = TRUE, strat_par can not be NULL unless there is a cen-
ter specific variable. For the binomial family the length of the vector should be
at most one which refers to “intercept”, and the value of this element should be
1. For gaussian family this vector can be 1 for indicating the “intercept” only, 2
for indicating the “sigma2” only, and c(1, 2) for both “intercept” and “sigma2”.
See ‘Details’ and ‘Examples’.

a vector of L elements for representing the center specific variable. This ar-
gument is used only when stratified = TRUE and strat_par = NULL. Each

4 bfi

element represents a specific feature of the corresponding center. There must
be only one specific value or attribute for each center. This vector could be a
numeric, characteristic or factor vector. Note that, the order of the centers in the
vector center_spec must be the same as in the list of the argument theta_hats.
The used data type in the argument center_spec must be categorical. Default
is center_spec = NULL. See also ‘Details’ and ‘Examples’.

Details

bfi function implements the BFI approach described in the paper Jonker et. al. (2023) given in
the references. The inference results gathered from different (L) centers are combined, and the BFI
estimates of the model parameters and curvature matrix evaluated at that point are returned.

The inference result from each center must be obtained using the MAP.estimation function sepa-
rately, and then all of these results (coming from different centers) should be compiled into a list
to be used as an input of bfi(). The models in the different centers should be defined in exactly
the same way; among others, exactly the same covariates should be included in the models. The
parameter vectors should be defined exactly the same, so that the L vectors and matrices in the input
lists theta_hat’s and A_hat’s are defined in the same way (e.g., the covariates need to be included
in the models in the same order).

Note that the order of the elements in the lists theta_hats, A_hats and Lambda, must be the same
with respect to the centers, so that in every list the element at the ¢ position is from the center £.
This should also be the case for the vector center_spec.

If for the locations intercept = FALSE, the stratified analysis is not possible anymore for the
binomial family.

If stratified = FALSE, both strat_par and center_spec must be NULL (the defaults), while if
stratified = TRUE only one of the two must be NULL.

If stratified = FALSE and all the L + 1 matrices are equal, it is sufficient to give a (list of) one
matrix only. In both cases of the stratified argument (TRUE or FALSE), if only the first L matrices
are equal, the argument Lambda can be a list of two matrices, so that the fist matrix represents the
chosen variance-covariance matrix for local centers and the second one is the chosen matrix for the
combined data set. The last matrix of the list in the argument Lambda can be built by the function
inv.prior.cov().

If the data type used in the argument center_spec is continuous, one can use stratified = TRUE
and center_spec = NULL, and set strat_par not to NULL (i.e., to 1, 2 or both (1, 2)). Indeed, in this
case, the stratification parameter(s) given in the argument strat_par are assumed to be different
across the centers.

Value

bfi returns a list containing the following components:

theta_hat the vector of estimates obtained by combining the inference results from the L
centers with the 'BFI' methodology. If an intercept was fitted in every center
and stratified = FALSE, there is only one general “intercept” in this vector,
while if stratified = TRUE and strat_par = 1, there are L different intercepts
in the model, for each center one;

bfi 5

A_hat minus the curvature (or Hessian) matrix obtained by the 'BFI' method for the
combined model. If stratified = TRUE, the dimension of the matrix is always
greater than when stratified = FALSE;

sd the vector of standard deviation of the estimates in theta_hat obtained from
the matrix in A_hat, i.e., the vector equals sqrt(diag(solve(A_hat))) which
equals the square root of the elements at the diagonal of the inverse of the A_hat
matrix.

Author(s)
Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimat-
ing statistical models based on non-shared multicenter data sets, Statistics in Medicine, 1-18.
<https://doi.org/10.1002/sim.10072>

See Also

MAP.estimation and inv.prior.cov

Examples

HHHEHHARHEE A A
Example 1: y ~ Binomial (L=2 centers)
HHEHHHHHHHHEE AR AR

beta <- 1:4 # regression coefficients (beta[1] is the intercept)

Data Simulation for Local Center 1

nl <- 30 # sample size of center 1
X1 <- data.frame(x1=rnorm(n1), # continuous variable

x2=sample(@:2, nl1, replace=TRUE)) # categorical variable
make dummy variables
X1x2_1 <- ifelse(X1$x2 == "1', 1, @)
X1x2_2 <- ifelse(X1$x2 == '2', 1, 0)
X1$x2 <- as.factor(X1$x2)
linear predictor:
etal <- beta[1] + X1$x1 x beta[2] + X1x2_1 * beta[3] + X1x2_2 * beta[4]
inverse of the link function (g*{-1}(\eta) = \mu):
mul <- binomial()$linkinv(etal)
y1 <- rbinom(n1, 1, mul)

Data Simulation for Local Center 2

n2 <- 50 # sample size of center 2
X2 <- data.frame(x1=rnorm(n2), # continuous variable

x2=sample(@:2, n2, replace=TRUE)) # categorical variable
make dummy variables:
X2x2_1 <- ifelse(X2$x2 == '1', 1, @)
X2x2_2 <- ifelse(X2$x2 == '2', 1, @)
X2$x2 <- as.factor(X2$x2)
linear predictor:
eta2 <- betal[1] + X2$x1 x betal[2] + X2x2_1 * beta[3] + X2x2_2 * beta[4]
inverse of the link function:
mu2 <- binomial()$linkinv(eta2)

y2 <- rbinom(n2, 1, mu2)

Load the BFI package

library(BFI)

MAP Estimates at Center 1

assume the same inverse covariance matrix (Lambda) for both centers:
Lambda <- inv.prior.cov(X1, lambda=0.01, family=binomial)

fitl <- MAP.estimation(y1l, X1, family=binomial, Lambda)
theta_hat1 <- fiti1$theta_hat # intercept and coefficient estimates
A_hat1 <- fit1$A_hat # minus the curvature matrix

MAP Estimates at Center 2

fit2 <- MAP.estimation(y2, X2, family=binomial, Lambda)

theta_hat2 <- fit2$theta_hat
A_hat2 <- fit2$A_hat

BFI at Central Center

A_hats <- list(A_hatl, A_hat2)

theta_hats <- list(theta_hatl, theta_hat2)
bfi <- bfi(theta_hats, A_hats, Lambda)
class(bfi)

summary (bfi, cur_mat=TRUE)

By running the following line an error appears because when stratified = TRUE,
both 'strat_par' and 'center_spec' can not be NULL:

Just4checkl <- try(bfi(theta_hats, A_hats, Lambda, stratified=TRUE), TRUE)
class(Just4checkl) # By default, both 'strat_par' and 'center_spec' are NULL!

bfi

By running the following line an error appears because when stratified = TRUE,

last matrix in 'Lambda' should not have the same dim. as the other local matrices:
Justé4check2 <- try(bfi(theta_hats, A_hats, Lambda, stratified=TRUE, strat_par=1), TRUE)
class(Just4check2) # All matices in Lambda have the same dimension!

Stratified analysis when 'intercept' varies across two centers:

newLam <- inv.prior.cov(X1, lambda=c(@.1, ©.3), family=binomial, stratified=TRUE,
strat_par = 1)

bfi <- bfi(theta_hats, A_hats, list(Lambda, newLam), stratified=TRUE, strat_par=1)

summary (bfi, cur_mat=TRUE)

B
Example 2: y ~ Gaussian (L=3 centers) #i#
AR AR AR

Model Assumptions:

p <- 3 # number of coefficients without 'intercept'

theta <- c(1, rep(2, p), 1.5) # reg. coefficients (theta[1] is 'intercept') & 'sigma2' =1.5

Data Simulation for Local Center 1

ni <- 30 # sample size of center 1

X1 <- data.frame(matrix(rnorm(n1 * p), n1, p)) # continuous variables
linear predictor:

etal <- thetal[1] + as.matrix(X1) %*% thetal[2:4]

inverse of the link function (g*{-1}(\eta) = \mu):

mul <- gaussian()$linkinv(etal)

y1 <- rnorm(n1, mul, sd = sqgrt(thetal[5]))

Data Simulation for Local Center 2

n2 <- 40 # sample size of center 2

X2 <- data.frame(matrix(rnorm(n2 * p), n2, p)) # continuous variables
linear predictor:

eta2 <- thetal[1] + as.matrix(X2) %*% thetal[2:4]

inverse of the link function:

mu2 <- gaussian()$linkinv(eta2)

y2 <= rnorm(n2, mu2, sd = sqrt(thetal[5]))

Data Simulation for Local Center 3

n3 <- 50 # sample size of center 3

X3 <~ data.frame(matrix(rnorm(n3 * p), n3, p)) # continuous variables
linear predictor:

eta3 <- theta[1] + as.matrix(X3) %*% thetal[2:4]

inverse of the link function:

mu3 <- gaussian()$linkinv(eta3)

bfi

y3 <= rnorm(n3, mu3, sd = sqrt(thetal[5]))

Creating the inverse covariance matrix for the Gaussian prior distribution:
Lambda <- inv.prior.cov(X1, lambda=0.05, family=gaussian) # the same for both centers

MAP Estimates at Center 1

fitl <- MAP.estimation(y1, X1, family=gaussian, Lambda)
theta_hat1 <- fiti$theta_hat # intercept and coefficient estimates
A_hat1 <- fit1$A_hat # minus the curvature matrix

MAP Estimates at Center 2

fit2 <- MAP.estimation(y2, X2, family=gaussian, Lambda)
theta_hat2 <- fit2$theta_hat

A_hat2 <- fit2$A_hat

MAP Estimates at Center 3

fit3 <- MAP.estimation(y3, X3, family=gaussian, Lambda)
theta_hat3 <- fit3$theta_hat

A_hat3 <- fit3$A_hat

BFI at Central Center

A_hats <- list(A_hatl, A_hat2, A_hat3)

theta_hats <- list(theta_hat1, theta_hat2, theta_hat3)

bfi <- bfi(theta_hats, A_hats, Lambda)

summary (bfi, cur_mat=TRUE)

Stratified analysis when 'intercept' varies across two centers:

newLaml <- inv.prior.cov(X1, lambda=c(0.1,0.3), family=gaussian, stratified=TRUE,
strat_par = 1, L=3)

'newLaml' is used the prior for combined data and 'Lambda' is used the prior for locals

bfil <- bfi(theta_hats, A_hats, list(Lambda, newLaml), stratified=TRUE, strat_par=1)

summary (bfil, cur_mat=TRUE)

Stratified analysis when 'sigma2' varies across two centers:

newLam2 <- inv.prior.cov(X1, lambda=c(0.1,0.3), family=gaussian, stratified=TRUE,
strat_par = 2, L=3)

'newLam2' is used the prior for combined data and 'Lambda' is used the prior for locals

bfi2 <- bfi(theta_hats, A_hats, list(Lambda, newLam2), stratified=TRUE, strat_par=2)

summary (bfi2, cur_mat=TRUE)

inv.prior.cov 9

Stratified analysis when 'intercept' and 'sigma2' vary across 2 centers:

newLam3 <- inv.prior.cov(X1, lambda=c(0.1,0.2,0.3), family=gaussian, stratified=TRUE,
strat_par = c(1, 2), L=3)

'newLam3' is used the prior for combined data and 'Lambda' is used the prior for locals

bfi3 <- bfi(theta_hats, A_hats, list(Lambda, newLam3), stratified=TRUE, strat_par=1:2)

summary (bfi3, cur_mat=TRUE)

Assume the first and third centers have the same center-specific covariate value of '3',

while this value for the second center is '1', i.e., center_spec = c(3,1,3)

newLam4 <- inv.prior.cov(X1, lambda=c(@.1, 0.2, 0.3), family=gaussian, stratified=TRUE,
center_spec = c¢(3,1,3), L=3)

'newLam4' is used the prior for combined data and 'Lambda' is used the prior for locals

bfi4 <- bfi(theta_hats, A_hats, list(Lambda, newLam4), stratified=TRUE, center_spec = c(3,1,3))

summary(bfi4, cur_mat=TRUE)

inv.prior.cov Creates an inverse covariance matrix for a Gaussian prior

Description

inv.prior.cov builds a diagonal inverse covariance matrix for the Gaussian prior distribution
based on the design matrix of covariates, that takes into account the number of regression parameters
in case of categorical covariates. In case of a linear model, it also includes a row and column for
the variance of the measurement errors.

Usage

inv.prior.cov(X, lambda = 1, L = 2, family = gaussian, intercept = TRUE,
stratified = FALSE, strat_par = NULL, center_spec = NULL)

Arguments
X design matrix of dimension n X p, where n is the number of samples observed,
and p is the number of predictors/variables so excluding the intercept.
lambda the vector used as the diagonal of the (inverse covariance) matrix that will be

created by inv.prior.cov(). The length of the vector depends on the num-
ber of columns of X, type of the covariates (continuous/dichotomous or cate-
gorical), family, whether an intercept is included in the model, and whether
stratified analysis is desired. When stratified = FALSE, 1ambda could be
a single positive number (if all values in the vector are equal), a vector of two el-
ements (the first is used for regression parameters including “intercept” and the
second for the “sigma2”), or a vector of length equal to the number of model pa-
rameters. However, the length of 1ambda is different when stratified = TRUE,
see ‘Details’ for more information. Default is lambda = 1.

10

family

intercept

stratified

strat_par

center_spec

Details

inv.prior.cov

the number of centers. This argument is used only when stratified = TRUE.
Defaultis L = 2. See ‘Details’ and ‘Examples’.

a description of the error distribution and link function used to specify the model.
This can be a character string naming a family function or the result of a call to
a family function (see family for details). In the current version, the family
of model can be gaussian (with identity link function) and binomial (with
logit link function). By default the gaussian family is used. In case of a linear
regression model, family = gaussian, there is an extra model parameter for the
variance of measurement error.

logical flag for having an intercept. By changing the intercept the dimension
of the inverse covariance matrix changes. If intercept = TRUE (the default), the
output matrix created by inv.prior.cov() has one row and one column related
to intercept, while if intercept = FALSE, the resulting matrix does not have
the row and column called intercept.

logical flag for performing the stratified analysis. If stratified = TRUE, the
parameter(s) selected in the strat_par argument are allowed to be different
across centers. This argument should only be used when designing the inverse
covariance matrix for the (fictive) combined data, i.e., the last matrix for the
Lambda argument in bfi(). If inv.prior.cov() is used for the analysis in the
local centers (to built the L first matrices for the Lambda argument in bfi()),
this argument should be FALSE, even if the BFI analysis is stratified. Default is
stratified = FALSE. See ‘Details’ and ‘Examples’.

a one- or two-element integer vector for indicating the stratification parame-
ter(s). The values 1 and/or 2 are/is used to indicate that the “intercept” and/or
“sigma2” are allowed to vary, respectively. This argument is used only when
stratified = TRUE. Default is strat_par = NULL, but if stratified = TRUE,
strat_par can not be NULL. For the binomial family the length of the vector
should be one which refers to “intercept”, and the value of this element should
be 1. For gaussian this vector can be 1 for indicating the “intercept” only, 2 for
indicating the “sigma2” only, and c(1, 2) for both “intercept” and “sigma2”. See
‘Examples’.

a vector of L elements for representing the center specific variable. This ar-
gument is used only when stratified = TRUE and strat_par = NULL. Each
element represents a specific feature of the corresponding center. There must
be only one specific value or attribute for each center. This vector could be a
numeric, characteristic or factor vector. Note that, the order of the centers in the
vector center_spec must be the same as in the list of the argument theta_hats
in the function bfi(). The used data type in the argument center_spec must be
categorical. Default is center_spec = NULL. See also ‘Details’ and ‘Examples’.

inv.prior.cov creates a diagonal matrix with the vector lambda as its diagonal. The argument
stratified = TRUE should only be used to construct a matrix for the prior density in case of strat-
ification in the fictive combined data. Never be used for the construction of the matrix for analysis

in the centers.

When stratified = FALSE, the length of the vector lambda depends on the covariate matrix X,
family, and whether an “intercept” is included in the model. For example, if the design matrix X

inv.prior.cov 11

has p columns with continuous or dichotomous covariates, family = gaussian, and intercept =
TRUE, then 1ambda should have p + 2 elements. In this case, if in X there is a categorical covariate
with ¢ > 2 categories, then the length of 1ambda increases with ¢ — 2. All values of lambda should
be non-negative as they represent the inverse of the variance of the Gaussian prior. Note that, if all
values in the vector 1ambda equal, one value is enough to be given as entry. If 1ambda is a scalar, the
function inv.prior.cov sets each value at the diagonal equal to lambda. In the linear regression
model the last parameter is assumed to be the inverse of the variance of the prior distribution for
the measurement error. If lambda is two dimensional, the first value is used for the prior of the
regression parameters and the second for the inverse of the variance of the prior distribution for the
measurement error.

If stratified = TRUE the length of the vector 1lambda should be equal to the number of parameters
in the combined model.

If intercept = FALSE, for the binomial family the stratified analysis is not possible therefore
stratified can not be TRUE.

If stratified = FALSE, both strat_par and center_spec must be NULL (the defaults), while if
stratified = TRUE only one of the two must be NULL.

The output of inv.prior.cov() can be used in the main functions MAP.estimation() and bfi().

Value

inv.prior.cov returns a diagonal matrix. The dimension of the matrix depends on the num-
ber of columns of X, type of the covariates (continuous/dichotomous or categorical), family, and
intercept.

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimat-
ing statistical models based on non-shared multicenter data sets, Statistics in Medicine, 1-18.
<https://doi.org/10.1002/sim.10072>

See Also

MAP.estimation

Examples

X <- data.frame(x1=rnorm(50), # standard normal variable
x2=sample(@:2, 50, replace=TRUE), # categorical variable
x3=sample(@:1, 50, replace=TRUE)) # dichotomous variable

X$x2 <- as.factor(X$x2)

X$x3 <- as.factor(X$x3)

12

inv.prior.cov

library(BFI)

The (inverse) variance value (lambda=0.05) is assumed to be
the same for Gaussian prior of all parameters (for non-stratified)

y ~ Binomial with 'intercept'
inv.prior.cov(X, lambda=0.05, family=binomial) # returns a 5-by-5 matrix

y ~ Binomial without 'intercept'
inv.prior.cov(X, lambda=0.05, family="binomial"”, intercept = FALSE) # a 4-by-4 matrix

y ~ Gaussian with 'intercept'
inv.prior.cov(X, lambda=0.05, family=gaussian) # returns a 6-by-6 matrix

y ~ Binomial when 'intercept' varies across 3 centers:
inv.prior.cov(X, lambda=c(.2, 1), family=binomial, stratified=TRUE, strat_par =1, L = 3)

y ~ Gaussian when 'intercept' and 'sigma2' vary across 2 centers; y ~ Gaussian
inv.prior.cov(X, lambda=c(1, 2, 3), family=gaussian, stratified=TRUE, strat_par = c(1, 2))

y ~ Gaussian when 'sigma2' varies across 2 centers (with 'intercept')
inv.prior.cov(X, lambda=c(1, 2, 3), family=gaussian, stratified=TRUE, strat_par = 2)

y ~ Gaussian when 'sigma2' varies across 2 centers (without 'intercept')
inv.prior.cov(X, lambda=c(2, 3), family=gaussian, intercept = FALSE, stratified=TRUE,
strat_par = 2)

center specific covariate has K=2 categories across 4 centers; y ~ Binomial
inv.prior.cov(X, lambda=c(@.1:2), family=binomial, stratified=TRUE,
center_spec = c("Iran","Netherlands”,"Netherlands"”,"Iran"), L=4)

center specific covariate has K=3 categories across 5 centers; y ~ Gaussian
inv.prior.cov(X, lambda=c(@.5:3), family=gaussian, stratified=TRUE,
center_spec = c(”"Medium”,"”Big"”,"Small”,"Big","Small"), L=5)

center specific covariate has K=4 categories across 5 centers; y ~ Gaussian
inv.prior.cov(X, lambda=1, family=gaussian, stratified=TRUE, center_spec = c(3,1:4), L=5)

MAP.estimation

13

MAP.estimation

Maximum A Posteriori estimation

Description

MAP.estimation function is used (in local centers) to compute Maximum A Posterior (MAP) esti-
mators of the parameters for the GLM and soon for Survival models.

Usage

MAP.estimation(y, X, family = gaussian, Lambda, intercept = TRUE,

Arguments

y

family

Lambda

intercept

initial

control

initial = NULL, control = list())

response vector. If the binomial family is used, this argument is a vector with
entries O (failure) or 1 (success). Alternatively, the response can be a matrix
where the first column is the number of “successes” and the second column is
the number of “failures”.

design matrix of dimension n X p, where p is the number of covariables or
predictors.

a description of the error distribution and link function used to specify the model.
This can be a character string naming a family function or the result of a call to
a family function (see family for details). In the current version of the pack-
age, the family of model can be gaussian (with identity link function) and
binomial (with logit link function). By default the gaussian family is used.
In case of a linear regression model, family = gaussian, there is an extra model
parameter for the variance of measurement error.

the inverse variance-covariance matrix of the Gaussian distribution that is used
as prior distribution for the model parameters. The dimension of the matrix
depends on the number of columns of X, type of the covariates (continuous /
dichotomous or categorical), family, and intercept. However, Lambda can be
easily created by inv.prior.cov().

logical flag for fitting an intercept. If intercept=TRUE (the default), the inter-
cept is fitted, i.e., it is included in the model, and if intercept=FALSE it is set
to zero, i.e., it’s not in the model.

a vector specifying initial values for the parameters to be optimized over. The
length of initial is equal to the number of model parameters and thus, is equal
to the number of rows or columns of Lambda. Since the 'L-BFGS-B' method is
used in the algorithm, these values should always be finite. Default is a vector
of zeros.

a list of control parameters. See ‘Details’.

14 MAP.estimation

Details

MAP.estimation function finds the Maximum A Posteriori (MAP) estimates of the model parame-
ters by maximizing the log-posterior density with respect to the parameters, i.e., the estimates equal
the values for which the log-posterior density is maximal (the posterior mode). In other words,
MAP.estimation() optimizes the log-posterior density with respect to the parameter vector to ob-
tain its MAP estimates. In addition to the model parameters, i.e., coefficients (5’s) and variance
error (02), the curvature matrix (Hessian of the log-posterior) is estimated around the mode.

The MAP.estimation function returns an object of class ‘bfi‘. Therefore, summary() can be used
for the object returned by MAP.estimation().

To solve unconstrained and bound-constrained optimization problems, the MAP.estimation func-
tion utilizes an optimization algorithm called Limited-memory Broyden-Fletcher-Goldfarb-Shanno
with Bound Constraints (L-BFGS-B), Byrd et. al. (1995). The L-BFGS-B algorithm is a limited-
memory “quasi-Newton” method that iteratively updates the parameter estimates by approximating
the inverse Hessian matrix using gradient information from the history of previous iterations. This
approach allows the algorithm to approximate the curvature of the posterior distribution and effi-
ciently search for the optimal solution, which makes it computationally efficient for problems with
a large number of variables.

By default, the algorithm uses a relative change in the objective function as the convergence crite-
rion. When the change in the objective function between iterations falls below a certain threshold
(‘“factr®) the algorithm is considered to have converged. The convergence can be checked with the
argument convergence in the output. See ‘Value’.

In case of convergence issue, it may be necessary to investigate and adjust optimization parameters
to facilitate convergence. It can be done using the initial and control arguments. By the ar-
gument initial the initial points of the interative optimization algorithm can be changed, and the
argument control is a list that can supply any of the following components:

maxit: is the maximum number of iterations. Default is 100;

factr: controls the convergence of the 'L-BFGS-B' method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. Default for factr is le7,
which gives a tolerance of about 1e-9. The exact tolerance can be checked by multiplying this
value by .Machine$double.eps;

pgtol: helps to control the convergence of the 'L-BFGS-B' method. It is a tolerance on the pro-
jected gradient in the current search direction, i.e., the iteration will stop when the maximum
component of the projected gradient is less than or equal to pgtol, where pgtol> 0. Default
is zero, when the check is suppressed;

trace: is a non-negative integer. If positive, tracing information on the progress of the opti-
mization is produced. Higher values may produce more tracing information: for the method
"L-BFGS-B' there are six levels of tracing. To understand exactly what these do see the source
code of optim function in the stats package;

REPORT: is the frequency of reports for the 'L-BFGS-B' method if 'control$trace’ is positive.
Default is every 10 iterations;

1mm: is an integer giving the number of BFGS updates retained in the 'L-BFGS-B' method. Default
is 5.

MAP.estimation

Value

15

MAP.estimation returns a list containing the following components:

Hassan Pazira

theta_hat the vector corresponding to the maximum a posteriori (MAP) estimates of the
parameters;

A_hat minus the curvature (or Hessian) matrix around the point theta_hat. The di-
mension of the matrix is the same as the argument Lambda;

sd the vector of standard deviation of the MAP estimates in theta_hat, that is
sgrt(diag(solve(A_hat)));

Lambda the inverse variance-covariance matrix of the Gaussian distribution that is used
as prior distribution for the parameters. It’s exactly the same as the argument
Lambda;

formula the formula applied;

names the names of the model parameters;

n sample size;

np the number of coefficients;

value the value of minus the log-likelihood posterior density evaluated at theta_hat;

family the family object used.;

intercept logical flag used to fit an intercept if TRUE, or set to zero if FALSE;

convergence an integer value used to encode the warnings and the errors related to the algo-
rithm used to fit the model. The values returned are:
0 algorithm has converged;
1 maximum number of iterations ('maxit’) has been reached;
2 Warning from the ’L-BFGS-B’ method. See the message after this value;

control the list of control parameters used to compute the MAP estimates.

Author(s)

Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimat-
ing statistical models based on non-shared multicenter data sets, Statistics in Medicine, 1-18.

<https://doi.org/10.1002/sim.10072>

Byrd R.H., Lu P.,, Nocedal J. and Zhu C. (1995). A limited memory algorithm for bound constrained
optimization. STAM Journal on Scientific Computing, 16, 1190-1208. <https://doi.org/10.1137/0916069>

See Also

bfi, inv.prior.cov and summary.bfi

16 Nurses

Examples

model assumption:
theta <- ¢(1, 2, 2, 2, 1.5) # model parameters: coefficients and sigma2 = 1.5

Data Simulation

n <- 30 # sample size

p <=3 # number of coefficients without intercept

X <- data.frame(matrix(rnorm(n * p), n, p)) # continuous variables
linear predictor:

eta <- theta[1] + theta[2] * X$X1 + theta[3] * X$X2 + theta[4] * X$X3
inverse of the link function (g*{-1}(\eta) = \mu):

mu <- gaussian()$linkinv(eta)

y <= rnorm(n, mu, sd = sqrt(thetal[5]))

MAP estimates with 'intercept'

Lambda <- inv.prior.cov(X, lambda = c(@0.1, 1), family = gaussian)
(fit <- MAP.estimation(y, X, family = gaussian, Lambda))
class(fit)

summary(fit, cur_mat = TRUE)

MAP estimates without 'intercept'

Lambda <- inv.prior.cov(X, lambda = c(@.1, 1), family = gaussian, intercept = FALSE)
(fit1 <- MAP.estimation(y, X, family = gaussian, Lambda, intercept = FALSE))
summary (fit1, cur_mat = TRUE)

Nurses Nurses’ stress in different hospitals

Description

This dataset comprises three-level simulated data extracted for a hypothetical study investigating
stress levels within hospital settings. The dataset focuses on nurses working in specific wards
within various hospitals. It includes several variables, such as nurse age (measured in years), nurse
experience (measured in years), nurse gender (@ for male, 1 for female), ward type (@ for general
care, 1 for special care), and hospital size (@ for small, 1 for medium, 2 for large). The dataset
in the package is obtained from the original dataset by leaving out some of the unused columns.

summary.bfi 17

Usage

data(Nurses)

Source

https://multilevel-analysis.sites.uu.nl/datasets/

References

Hox, J., Moerbeek, M., and van de Schoot, R. (2010). Multilevel Analysis: Techniques and Appli-
cations, Second Edition (2nd ed.). Routledge. <https://doi.org/10.4324/9780203852279>

summary.bfi Summarizing BFI Fits

Description

Summary method for an object with class ’bfi’ created by the MAP.estimation function.

Usage

S3 method for class 'bfi'
summary(object, cur_mat = FALSE,

digits = max(3, getOption("digits”) - 3), ...)
Arguments
object fitted bfi object.
cur_mat logical; if TRUE, minus the curvature matrix around the estimated parameters is
returned and printed. Default is FALSE.
digits significant digits in printout.
additional arguments affecting the summary produced.
Details

summary.bfi() gives information about the MAP estimates of parameters of the model. It can be
used for the bfi objects built by the MAP. estimation function.

The output of the summary method shows the details of the model, i.e. formula, family and link
function used to specify the generalized linear model, followed by information about the estimates,
standard deviations and credible intervals. Information about the log-likelihood posterior and con-
vergence status are also provided.

By default, summary.bfi function does not return (minus) the curvature matrix, but the user can
use cur_mat = TRUE to print it.

18 summary.bfi

Value

summary.bfi returns an object of class summary.bf1i, a list with the following components:

theta_hat the component from object. The last element of this vector is the estimate of the
dispersion parameter (sigma2) if family = gaussian. See the MAP.estimation
function.

A_hat the component from object. See the MAP.estimation function.

sd the component from object. If family = gaussian, the last element of this
vector is the square root of the estimated dispersion. See the MAP.estimation
function.

Lambda the component from object. See the MAP.estimation function.

formula the component from object. See the MAP.estimation function.

n the component from object. See the MAP.estimation function.

np the component from object. See the MAP.estimation function.

family the component from object. See the MAP.estimation function.

intercept the component from object. See the MAP.estimation function.

convergence the component from object. See the MAP.estimation function.

control the component from object. See the MAP.estimation function.

estimate the estimated regression coefficients, i.e., without the estimate sigma2.

loglLikPost the value of the log-likelihood posterior density evaluated at estimates (theta_hat).

link the link function. By default the gaussian family with identity link function
and the binomial family with logit link function are used.

dispersion the estimated variance of the random error, i.e., sigma2. The dispersion is
taken as 1 for the binomial family.

CI a 95% credible interval of the MAP estimates of the parameters.

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

See Also

MAP.estimation and bfi

model assumption:
theta <- c¢(1, 2, 3, 4, 1.5) # coefficients and sigma2 = 1.5

Data Simulation

trauma 19

n <- 40
<- data.frame(x1=rnorm(n), # continuous variable
x2=sample(1:3, n, replace=TRUE)) # categorical variable
Xx2_1 <- ifelse(X$x2 == '2', 1, @)
Xx2_2 <- ifelse(X$x2 == '3', 1, @)

X$x2 <- as.factor(X$x2)
eta <- theta[1] + theta[2] * X$x1 + theta[3] * Xx2_1 + theta[4] * Xx2_2

mu <- gaussian()$linkinv(eta)

y <- rnorm(n, mu, sd = sqrt(thetal[5]))

MAP estimations

Lambda <- inv.prior.cov(X, lambda = c(@0.1, 0.5), family = gaussian)
fit <- MAP.estimation(y, X, family = gaussian, Lambda)
class(fit)

summary (fit)

sumfit <- summary(fit, cur_mat = TRUE)
sumfit$estimate

sumfit$loglikPost

sumfit$dispersion

sumfit$CI

class(sumfit)

trauma Trauma patients from different hospitals

Description

This data set consists of data of 371 trauma patients from three hospitals. The binary variable
mortality is used as an outcome, and variables age, sex, the Injury Severity Score (ISS, rang-
ing from 1 (low) to 75 (high)) and the Glasgow Coma Scale (GCS, which expresses the level of
consciousness, ranging from 3 (low) to 15 (high)) are used as covariates. There are three types of
hospitals: peripheral hospital without a neuro-surgical unit (Status = 1), peripheral hospital with
a neuro-surgical unit (Status = 2), and academic medical center (Status = 3). Originally, the data
come from a multi center study collected with a different aim. For educational purposes minor
changes have been made, see the references below.

Usage

data(trauma)

20 trauma

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimat-
ing statistical models based on non-shared multicenter data sets, Statistics in Medicine, 1-18.
<https://doi.org/10.1002/sim.10072>

Draaisma J.M.Th, de Haan A.F.J., Goris R.J.A. (1989). Preventable Trauma Deaths in the Nether-
lands - A prospective Multicentre Study, The journal of Trauma, Vol. 29(11), 1552-1557.

Index

* Bayesian
bfi, 3
inv.prior.cov, 9
MAP.estimation, 13
summary.bfi, 17

+ Federated
bfi, 3
MAP.estimation, 13
summary.bfi, 17

x datasets
Nurses, 16
trauma, 19

+ package
BFI-package, 2

bfi, 3, 15,18
BFI-package, 2

family, 10, 13, 15
inv.prior.cov, 5,9, 15
MAP.estimation, 5, 11,13, 18
Nurses, 16

stats, /4
summary (summary.bfi), 17
summary.bfi, 15, 17

trauma, 19

21

	BFI-package
	bfi
	inv.prior.cov
	MAP.estimation
	Nurses
	summary.bfi
	trauma
	Index

