Package 'ADCT'

October 12, 2022

Type Package Title Adaptive Design in Clinical Trials Version 0.1.0 Author Yalin Zhu Maintainer Yalin Zhu <yalin.zhu@outlook.com> Description Existing adaptive design methods in clinical trials. The package includes power, stopping boundaries (sample size) calculation functions for two-group group sequential designs, adaptive design with coprimary endpoints, biomarker-informed adaptive design, etc. Imports stats, mvtnorm Suggests clinfun, gsDesign License GPL (>= 2) LazyData TRUE NeedsCompilation no **Repository** CRAN Date/Publication 2016-11-20 16:39:55

R topics documented:

BioInfo.Power	2
CopriEndpt.Power	3
OneArm.CondPower	4
TwoArms.CondPower	5
TwoGrpCopriEndpt.SimPower	6
	8

Index

BioInfo.Power

Description

Given the Biomarker-Informed design information, returns the overall power and probability of the arm is selected as the winner.

Usage

BioInfo.Power(uCtl, u0y, u0x, rhou, suy, sux, rho, sy, sx, Zalpha, N1, N, nArms, nSims)

Arguments

uCtl	mean value for the control group.
uØy	mean parameter of the group 1 for the parent model.
u0x	mean parameter of the group 2 for the parent model.
rhou	correlation coefficient between two groups for the parent model.
suy	standard deviation of the group 1 for the parent model.
sux	standard deviation of the group 2 for the parent model.
rho	correlation coefficient between two groups for the lower level model.
sy	standard deviation of the group 1 for the lower level model.
SX	standard deviation of the group 2 for the lower level model.
Zalpha	crtical point for rejection.
N1	sample size per group at interim analysis.
Ν	sample size per group at final analysis.
nArms	number of active groups.
nSims	number of simulation times.

Value

The evaluated power and probability of selecting the arm as the winner.

Author(s)

Yalin Zhu

References

Chang, M. (2014). Adaptive design theory and implementation using SAS and R. CRC Press.

CopriEndpt.Power

Examples

```
## Determine critical value Zalpha for alpha (power) =0.025
u0y=c(0,0,0); u0x=c(0,0,0)
BioInfo.Power(uCtl=0, u0y, u0x, rhou=1, suy=0, sux=0, rho=1, sy=4, sx=4,
Zalpha=2.772, N1=100, N=300, nArms=3, nSims=1000)
## Power simulation
u0y=c(1,0.5,0.2)
u0x=c(2,1,0.5)
BioInfo.Power(uCtl=0, u0y, u0x, rhou=0.2, suy=0.2, sux=0.2, rho=0.2, sy=4, sx=4,
Zalpha=2.772, N1=100, N=300, nArms=3, nSims=500)
```

CopriEndpt.Power Power Calculation for Two Coprimary Endpoints.

Description

Given the group sequential design information, returns the overall power.

Usage

CopriEndpt.Power(n, tau, mu1, mu2, rho, alpha1, alpha2, alternative)

Arguments

n	sample size for the design.
tau	information time for the interim analysis.
mu1	mean value for coprimary endpoint 1.
mu2	mean value for coprimary endpoint 2.
rho	correlation coefficient between two coprimary endpoints.
alpha1	significant level for the first stage.
alpha2	significant level for the second stage.
alternative	indicates the alternative hypothesis and must be one of "two.sided" or "two.sided".

Value

The evaluated power with attributes and computational error.

Author(s)

Yalin Zhu

References

Chang, M. (2014). Adaptive design theory and implementation using SAS and R. CRC Press.

Examples

```
# Example in Chang (2014) page 272
CopriEndpt.Power(n=197, tau=0.5, mu1=0.2, mu2=0.2, rho=0.5,
alpha1=0.0025, alpha2=0.024, alternative="one.sided")
sapply(c(-0.8,-0.5,-0.2,0,0.2,0.5,0.8),CopriEndpt.Power,
n=197, tau=0.5, mu1=0.2, mu2=0.2, alpha1=0.0025, alpha2=0.024, alternative="one.sided")
```

OneArm.CondPower	Conditional power for one-arm, two-stage design with two primary
	endpoints

Description

Given the group sequential design information, returns the conditional power.

Usage

OneArm.CondPower(mu1, mu2, n1, n2, rho, tau, alpha2, alternative)

Arguments

mu1	mean value for the first stage (endpoint 1).
mu2	mean value for the second stage (endpoint 2).
n1	sample size for the first stage.
n2	sample size for the second stage.
rho	correlation coefficient between two coprimary endpoints.
tau	information time for the interim analysis.
alpha2	significant level for the second stage.
alternative	indicates the alternative hypothesis and must be one of "two.sided" or "two.sided".

Value

The evaluated power with attributes and computational error.

Author(s)

Yalin Zhu

References

Chang, M. (2014). Adaptive design theory and implementation using SAS and R. CRC Press.

4

TwoArms.CondPower

Examples

```
# Example in Chang (2014) page 277
OneArm.CondPower(mu1=0.1333, mu2=0.1605, n1=130, n2=130, rho=0.35,
tau=0.5, alpha2=0.024, alternative = "one.sided")
OneArm.CondPower(mu1=0.1333, mu2=0.1605, n1=130, n2=414, rho=0.35,
tau=0.5, alpha2=0.024, alternative = "one.sided")
```

TwoArms.CondPower	Conditional power for two-group design, two-stage design with two
	primary endpoints

Description

Given the group sequential design information, returns the conditional power.

Usage

TwoArms.CondPower(mu1, mu2, sigma1, sigma2, n1, n2, rho, tau, alpha2, alternative)

Arguments

mean value for the first stage (endpoint 1).
mean value for the second stage (endpoint 2).
standard deviation for the first stage.
standard deviation for the second stage.
sample size for the first stage.
sample size for the second stage.
correlation coefficient between two coprimary endpoints.
information time for the interim analysis.
significant level for the second stage.
indicates the alternative hypothesis and must be one of "two.sided" or "two.sided".

Value

The evaluated power with attributes and computational error.

Author(s)

Yalin Zhu

References

Chang, M. (2014). Adaptive design theory and implementation using SAS and R. CRC Press.

Examples

```
# Example in Chang (2014) page 278
TwoArms.CondPower(mu1=0.28, sigma1=1.9, mu2=0.35, sigma2=2.2, n1=340, n2=340,
rho=0.3, tau=0.5, alpha2=0.024, alternative = "one.sided")
TwoArms.CondPower(mu1=0.28, sigma1=1.9, mu2=0.35, sigma2=2.2, n1=340, n2=482,
rho=0.3, tau=0.5, alpha2=0.024, alternative = "one.sided")
TwoArms.CondPower(mu1=0.32, sigma1=2, mu2=0.4, sigma2=1.8, n1=340, n2=340,
rho=0.3, tau=0.5, alpha2=0.024, alternative = "one.sided")
```

TwoGrpCopriEndpt.SimPower

Power Simulation for Two Group Two Coprimary Endpoints Group Sequential Design.

Description

Given the group sequential design information, returns the simulated overall power.

Usage

Arguments

mu11	standardized mean value for coprimary endpoint 1 in group 1.
mu12	standardized mean value for coprimary endpoint 2 in group 1.
mu21	standardized mean value for coprimary endpoint 1 in group 2.
mu22	standardized mean value for coprimary endpoint 2 in group 2.
rho	correlation coefficient between two coprimary endpoints.
tau	information time for the interim analysis.
alpha1	significant level for the first stage.
alpha2	significant level for the second stage.
alternative	indicates the alternative hypothesis and must be one of "two.sided" or "two.sided".
Nmax	maximum sample size per group.
В	the simulation iterative time.

Value

The evaluated power with attributes and computational error.

Author(s)

Yalin Zhu

6

References

Chang, M. (2014). Adaptive design theory and implementation using SAS and R. CRC Press.

Examples

Example in Chang (2014) page 275 TwoGrpCopriEndpt.SimPower(mu11=0.2,mu12=0.25, mu21=0.005, mu22=0.015, rho=0.25, tau=0.5, alpha1=0.0025, alpha2=0.024, alternative = "two.sided",Nmax=584, B=10000)

Index

BioInfo.Power, 2

CopriEndpt.Power, 3

OneArm.CondPower,4

TwoArms.CondPower,5
TwoGrpCopriEndpt.SimPower,6