FAQs about the data.table package in R

Matthew Dowle

February 11, 2011
(A later revision may be available on the homepage)

The first section, Beginner FAQs, is intended to be read in order from start to finish. It may
be read before reading the Introduction vignette.

Contents

1 Beginner FAQs

1.1
1.2
1.3

1.4
1.5

1.6

1.7
1.8

1.9

1.10
1.11
1.12
1.13
1.14

Why does DT[,5] return 57 e e
Why does DT[,"region"] return "region"?
Why does DT[,region] return a vector? I'd like a 1-column data.table. There is
no drop argument like I'm used to in data.frame.
Why does DT[,x,y,z] not work? I wanted the 3 columns x,y and z.
I assigned a variable mycol="x" but then DT[,mycol] returns "x". How do I get it
to look up the column name contained in the mycol variable?
Ok but I don’t know the expressions in advance. How do I programatically pass

OK, I'm starting to see what data.table is about, but why didn’t you enhance
data.frame in R? Why does it have to be a new package?
Why are the defaults the way they are? Why does it work the way it does?
Isn’t this already done by with() and subset() in base?
Why does X[Y] return all the columns from Y too? Shouldn’t it return a subset of X7
What is the difference between X[Y] and merge(X,Y)?7

2 General syntax

2.1

2.2
2.3
24

2.5
2.6
2.7

2.8
2.9
2.10

2.11
2.12

How can I avoid writing a really long j expression? You've said I should use the
column names, but I've got loads of them.
Why is the default for mult now "all”?
I'm using c() in the j and getting strange results.
I have built up a complex table with many columns. I want to use it as a template
for a new table; i.e., create a new table with no rows, but with the column types
copied from my table. Can I do that easily?
Is a NULL data.table the same as DT[0]7

But my code uses j=DT(...) and it works. The previous FAQ says that DT() has
been removed. L. oL e
What are the scoping rules for j expressions?
Can I trace the j expression as it runs through the groups?
Inside each group, why is the group variable a long vector containing the same value
repeated? . .. L. L L L e
Only the first 10 rows are printed, how do I print more?
With an X[Y] join, what if X contains a column called "Y"?

w W

R R e W

(%)

ot

http://datatable.r-forge.r-project.org/

2.13 X[z[Y]] is failing because X contains a column "Y". I want it to use the table Y in

calling Scope. e e e 8

2.14 Can you explain further why data.table is inspired by A[B] syntax in base? 8

2.15 T've heard that the syntax is analogous to SQL? 8

2.16 What is the thinking behind rolling joins? 8

2.17 Difference to [.data.frame 7 Lo Lo Lo 8

3 Questions relating to compute time 9

3.1 T have 20 columns in data.table x. Why is an expression of one column so quick? 9

3.2 T don’t have a key on a large table, but grouping is still really quick. Why is that? 9

3.3 Why is grouping by columns in the key faster than an ad hoc by? 9

4 Error messages 9

4.1 Could not find function "DT" e 9
4.2 T have created a package that depends on data.table. How do I ensure my package

is datatable-aware so that inheritance from data.frame still works? 10

4.3 Why does [.data.table now have a drop argument from v1.57. 10

4.4 wunused argument(s) (MySum = sum(v)) 10

5 General questions about the package 10

5.1 v1.3 appears to be missing from the CRAN archive 7 10

5.2 Is data.table compatible with S-plus 7 10

5.3 Is it available for Linux, Mac and Windows? 10

5.4 T think it’s great. What can I do? 10

5.5 T think it’s not great. How do I warn others about my experience? 10
5.6 T have a question. Iknow the posting guide tells me to contact the maintainer (NOT

r-help), but that’s just two people. Is there a larger group of people I can ask? . . 11

5.7 Where are the datatable-help archives? 11

5.8 TI'd prefer not to contact datatable-help, can I mail just one or two people privately? 11

5.9 Why is this FAQ a pdf? Can the FAQ moved to a website? 11

1 Beginner FAQs

1.1 Why does DT[,5] return 5 ?

Because, by default, unlike a data.frame, the 2nd argument is an expression which is evaluated
within the scope of DT. 5 evaluates to 5. It is generally bad practice to refer to columns by number
rather than name. If someone else comes along and reads your code later, they may have to hunt
around to find out which column is number 5. Furthermore, if you or someone else changes the
column ordering of DT higher up in your R program, you might get bugs if you forget to change all
the places in your code which refer to column number 5.

Say column 5 is called "region”, just do DT [, region] instead. Notice there are no quotes around
the column name. This is what we mean by j being evaluated within the scope of the data.table.
That scope consists of an environment where the column names are variables.

You can write any R expression in the j e.g. DT[,colA*colB/2]. Further, j may be a 1ist ()
of many R expressions, including calls to any R package e.g. DT[,fitdistr(d1-d1,"normal")].

Having said this, there are some circumstances where referring to a column by number is ok,
such as a sequence of columns. In these situations just do DT[,5:10,with=FALSE] or
DT[,c(1,4,10) ,with=FALSE]. See ?"[.data.table" for an explanation of the with argument.

Note that with () has been a base function for a long time. That’s one reason we say data.table
builds upon base functionality. There is little new here really, data.table is just making use of
with() and building it into the syntax.

1.2 Why does DT[,"region"] return "region"?

See answer to 1.1 above. Try DT[,region] instead. Or DT[, "region",with=FALSE].

1.3 Why does DT[,region] return a vector? I'd like a 1-column data.table.
There is no drop argument like I’'m used to in data.frame.

Try DT[,list(region)] instead.

1.4 Why does DT[,x,y,z] not work? I wanted the 3 columns x,y and z.

The j expression is the 2nd argument. The correct way to do this is DT[,1ist(x,y,z)].

1.5 T assigned a variable mycol="x" but then DT[,mycol] returns "x". How
do I get it to look up the column name contained in the mycol
variable?

This is what we mean when we say the j expression ’sees’ objects in the calling scope. The
variable mycol does not exist as a column name of DT so R then looked in the calling scope and
found mycol there, and returned its value "x". This is correct behaviour. Had mycol been a
column name, then that column’s data would have been returned. What you probably meant was
DT[,mycol,with=FALSE], which will return the x column’s data as you wanted. Alternatively,
since a data.table is just a list, you can do DT[["x"]] or DT[[mycol]].

1.6 Ok but I don’t know the expressions in advance. How do I progra-
matically pass them in?

To create expressions use the quote () function. We refer to these as quote()-ed expressions to save
confusion with the double quotes used to create a character vector such as c("x"). The simplest
quote()-ed expression is just a column name on it’s own :

q = quote(x)

DT[,eval(q)] # returns the column x as a vector

q = quote(list(x))

DT[,eval(q)] # returns the column x as a 1-column data.table
Since these are expressions, we are not restricted to column names only :

q = quote(mean(x))

DT[,eval(q)] # identical to DT[,mean(x)]

q = quote(list(x,sd(y),mean(y*z)))

DT[,eval(q)] # identical to DT[,list(x,sd(y),mean(y*z))]
If it’s just simply a vector of column names it may be simpler to pass a character vector to j and
use with=FALSE.

1.7 This is really hard. What’s the point ?

j doesn’t have to be just column names. You can put any R expression of column names directly
as the j, e.g., DT[,mean(x*y/z)]. The same applies to i. You have been used to i being row
numbers or row names only. It’s nice to simply write DT [x>1000, sum(y*z)]. What does that
mean? It just runs the j expression on the set of rows where the i expression is true. i can be
any expression of column names that evaluates to logical. You don’t even need to return data,
e.g., DT[x>1000, plot(y,z)]. When we get to compound table joins we will see how i and j can
themselves be other data.table queries. We are going to stretch i and j much further than this,
but to get there we need you on board first with FAQs 1.1-1.6.

1.8 OK, I'm starting to see what data.table is about, but why didn’t
you enhance data.frame in R? Why does it have to be a new package?

As FAQ 1.1 highlights, j in [.data.table is fundamentally different from j in [.data.frame.
Even something as simple as DF[,1] would break existing code in many packages and user code.
This is by design, and we want it to work this way for more complicated syntax to work. There
are other differences, too.

However, we have proposed enhancements to R wherever possible. Some of these have been
accepted and included. We intend to continue attempts to contribute to R itself whenever an
opportunity arises.

1.9 Why are the defaults the way they are? Why does it work the way
it does?

The simple answer is because the author designed it for his own use, and he wanted it that way.
He finds it a more natural, faster way to write code, which also executes more quickly.

1.10 Isn’t this already done by with() and subset() in base?

Some of the features discussed so far are, yes. The package builds upon base functionality. It
does the same sorts of things but with less code required, and executes many times faster if used
correctly.

1.11 Why does X[Y] return all the columns from Y too? Shouldn’t it
return a subset of X7

This was changed in v1.5.3. X[Y] now includes Y’s non-join columns. We refer to this feature as
join inherited scope because not only are X columns available to the j expression, so are Y columns.
The downside is that X[Y] is less efficient since every item of Y’s non-join columns are duplicated
to match the (likely large) number of rows in X that match. We therefore strongly encourage
X[Y,j] instead of X[Y]. See next FAQ.

1.12 What is the difference between X[Y] and merge(X,Y)?

X[Y] is a join, looking up X’s rows using Y (or Y’s key) as an index.
Y[X] is a join, looking up Y’s rows using X (or X’s key) as an index.
merge(X,Y) does both ways at the same time. The number of rows of X[Y] and Y[X] usually differ;
the number of rows returned by merge(X,Y) and merge(Y,X) are the same.

BUT that misses the main point. Most tasks require something to be done on the data after
a join or merge. Why join (or merge) all the columns of data, only to use a small subset of them
afterwards? You may suggest merge (X[,ColsNeeded1],Y[,ColsNeeded2]), but that takes copies
of the subsets of data, and it requires the programmer to work out which columns are needed.
X[Y,j] in data.table does all that in one step for you. When you write X[Y,sum(foo*bar)],
data.table automatically inspects the j expression to see which columns it uses. It will only
subset those columns only. Memory is only created for the columns the j uses, and Y columns
enjoy standard R recycling rules within the context of each group. Let’s say foo is in X, and bar is
in Y (along with 20 other columns in Y). Isn’t X[Y, sum(foo*bar)] quicker to program and quicker
to run than a merge followed by a subset?

1.13 Anything else about X[Y,sum(foox*bar)]?

Remember that j (in this case sum(foo*bar)) is run for each group of X that each row of Y matches
to. This feature is by without by!

1.14 That’s nice but what if I don’t want by without by?

Mostly, we think most users will most of the time. If you really want j to run once for the whole
subset of X then try X[Y][,sum(foo*bar)]. If that needs to be efficient then you will have to work
harder (since this is outside the common use-case) and try X[Y list(foo,bar)][,sum(foo*bar)]. Since
list(foo,bar) only needs foo and bar, only those columns will be in the join result.

2 General syntax

2.1 How can I avoid writing a really long j expression? You’ve said I
should use the column names, but I’ve got loads of them.

There is a special .8D object, which stands for Sub Data. The j expression can use column names
as variables, as you know, but it can also use .SD, which refers to the sub data.table as a whole.
So to sum up all your columns it’s just DT[,1lapply(.SD,sum) ,by=grp]. It might seem tricky, but
it’s fast to write and fast to run. Notice you don’t have to create an anonymous function(). See
the timing vignette and comparison to other methods. The .SD object is efficiently implemented
internally and more efficient than passing an argument to a function. Please don’t do this though
: DT[,.SD[,"sales",with=FALSE] ,by=grp]. That ‘works’, but is very inefficient and inelegant.
This is what was intended: DT[,sum(x) ,by=grp] and could be 100’s of times faster if DT contains
many columns. No data.table may contain a column called .SD, that’s why it has a ”.” at the
start as you are unlikely to really want a column called ”.SD”.

2.2 Why is the default for mult now ”all”?

In v1.5.3 the default was changed to 7all”. When i (or i’s key if it has one) has fewer columns
than x’s key, mult was already set to "all” automatically. Changing the default makes this clearer
and easier for users as it came up quite often.

In versions up to v1.3, 7all” was slower. Internally, "all” was implemented by joining using "first”,
then again from scratch using "last”, after which a diff between them was performed to work out
the span of the matches in x for each row in i. Most often we join to single rows, though, where
“first”,"last” and "all” return the same result. We preferred maximum performance for the majority
of situations so the default chosen was "first”. When working with a non-unique key (generally
a single column containing a grouping variable), DT[?A”] returned the first row of that group so
DT[’A” mult="all"] was needed to return all the rows in that group.

In v1.4 the binary search in C was changed to branch at the deepest level to find first and last.
That branch will likely occur within the same final pages of RAM so there should no longer be
a speed disadvantage in defaulting mult to ’all’. We warned that the default might change, and
made the change in v1.5.3.

A future version of data.table may allow a distinction between a key and a unique key.
Internally mult="all” would perform more like mult="first” in the case that all x’s key columns
were joined to, and x’s key was a unique key. data.table would need checks on insert and update
to make sure a unique key is maintained. An advantage of specifying a unique key would be that
data.table would ensure no duplicates could be inserted.

2.3 DI’'m using c() in the j and getting strange results.
This is a common source of confusion. In data.frame you are used to, for example:

> DF = data.frame(x=1:3,y=4:6,z=7:9)
> DF

y
4
5
6

[\
W N~ N
© 00 NN

v
-]

F[, c (uyn’ "Z")J

,_.
o o<
© 0 ~N N

3

which returns the two columns. In data.table you know you can use the column names directly
and might try :

> DT = data.table(DF)
> DT[,c(y,z)]

[1] 456789

but this returns one vector. Remember that the j expression is evaluated within the environment
of DT, and c() returns a vector. If 2 or more columns are required, use list() instead:

> DT[,1ist(y,z)]

(1,
(2,
[3

B

P
[BN IS
© 00 N N

c() can be useful in a data.table too, but its behaviour is different from that in a data.frame.

2.4 I have built up a complex table with many columns. I want to use
it as a template for a new table; i.e., create a new table with no
rows, but with the column types copied from my table. Can I do
that easily?

Yes. If your complex table is called DT, try DT [0].

2.5 Is a NULL data.table the same as DT[0]?

No, despite the print method indicating otherwise. Strictly speaking, it’s not possible to have
is.null(data.table(NULL)) return FALSE. [Perhaps look at this again.]

2.6 Why has the DT() alias been removed?

DT was introduced originally as a wrapper for a list of j expressions. Since DT was an alias for
data.table, this was a convenient way to take care of silent recycling in cases where each item of
the j list evaluated to different lengths. The alias was one reason grouping was slow, though. As
of v1.3, list() should be passed instead to the j argument. list() is a primitive and is much faster,
especially when there are many groups. Internally, this was a nontrivial change. Vector recycling
is done internally, along with several other speed enhancements for grouping. Some users have
come to rely on the DT alias, though. If there is a lot of code that depends on DT (), you can easily
create the alias yourself: DT = function(...) data.table(...)

2.7 But my code uses j=DT(...) and it works. The previous FAQ says
that DT() has been removed.

Then you are using a version prior to 1.5.3. Prior to 1.5.3 [.data.table detected use of DT() in the
j and automatically replaced it with a call to 1ist (). This was to help the transition for existing
users. Please do not use j=data.table(...) as that may be slow. Please use j=list(...).

2.8 What are the scoping rules for j expressions?

Think of the subset as an environment where all the column names are variables. When a variable
foo is used in the j of a query such as X[Y,sum(foo0)], foo is looked for in the following order :

1. The scope of X’s subset, i.e., X’s column names.
2. The scope of each row of Y, i.e. Y’s column names (known as Join Inherited Scope)
3. The scope of the calling frame; e.g., the line that appears before the data.table query.

4. Exercise for reader: does it then ripple up the calling frames, or go straight to .GlobalEnv?

5. The global environment .GlobalEnv

This is lexical scoping as explained in R FAQ 3.3.1. The environment that the function was created
is not relevant, though, because there is no function. No anonymous function is passed to the j.
Instead, an anonymous body is passed to the j; for example,

> DT = data.table(x=rep(c("a","b"),c(2,3)),y=1:5)

> DT
Xy
[1,] a1
[2,] a 2
[3,] b3
[4,] b 4
[6,] b5

> DT[,{z=sum(y) ;z+3}, by=x]

2.9 Can I trace the j expression as it runs through the groups?

Try something like this:

> DT[,{

+ cat("Objects:",paste(objects(),collapse=","),"\n")
+ cat("Trace: x=",as.character(x)," y=",y,"\n")

+ sum(y)

+ },by=x]

Objects: x,y

Trace: x=aa y=12

Objects: x,y

Trace: x=bbb y=345
x V1

[1,] a 3

[2,] b 12

2.10 Inside each group, why is the group variable a long vector contain-
ing the same value repeated?

This is correct. We saw that in the previous FAQ. x was "a" repeated twice in the first group, and
"b" repeated three times in the second group. When you group, think of the data being split up.
Sometimes we want to use the value of the group in the expression, though. In that case, we just
use the first value.

> DT[,1ist(g=1,h=2,i=3, j=4,repeatgroupname=x,sum(y)) ,by=x] # not intended
x g h 1 j repeatgroupname V6

[1,] a1234 a 3

[2,] a1234 a 3

(3,]b1234 b 12

[4,] b1 234 b 12

[6,] b1234 b 12

> DT[,1ist(g=1,h=2,1=3, j=4,repeatgroupname=x[1],sum(y)),by=x] # intended

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Lexical-scoping

x g h 1 j repeatgroupname V6
[1,] a1234 a 3
[2,] b1 234 b 12

In the first attempt, the aggregate sum(y) was recycled to match the length of x. Recycling can
be useful, but wasn’t intended here.

2.11 Only the first 10 rows are printed, how do I print more?

Try print (DT,nrows=Inf) to print all rows, or set nrows to the number of rows you require.

2.12 With an X[Y] join, what if X contains a column called "Y"?

When i is a single name such as Y it is evaluated in the calling frame. In all other cases such as
calls to J() or other expressions, i is evaluated within the scope of X. This facilitates easy self
joins such as X[J(unique(colA)) ,mult="first"].

2.13 X[Z[Y]] is failing because X contains a column "Y". I want it to use
the table Y in calling scope.

The Z[Y] part is not a single name so that is evaluated within the frame of X and the problem
occurs. Try tmp=Z[Y];X[tmp]. This is robust to X containing a column "tmp" because tmp is a
single name. If you often encounter conflics of this type, one simple solution may be to name all
tables in uppercase and all column names in lowercase, or some similar scheme.

2.14 Can you explain further why data.table is inspired by A[B] syntax
in base?

2.15 TI’ve heard that the syntax is analogous to SQL?

nomatch=NA is like an outer join in SQL i.e. rows containing NA are returned for rows in i not
in x. nomatch=0 is like an inner join in SQL i.e. no rows are returned for rows in i not in x. "all”
is analogous to inner join behaviour in SQL. SQL has no first and last concept since it’s data is
inherently unordered (note that select top x * can not reliably return the same rows over time in
SQL

2.16 What is the thinking behind rolling joins?

By default an equi-join is performed on each column in turn. For example given x=data.table(id,datetime),
where the datetime is irregular, we look for the exact datetime in the i table occurring in the x

table. In R we often roll data on through missing periods using a function such as fill.na so that

we can then equi-join to the regular time series. However this takes programming time, compute

time and storage space, sometimes very significantly. roll=TRUE applies to the last column of x’s

key. It returns the last available observation on or before the datetime (or any numeric) in the

last column of the i table. The datetimes in x that are joined to are returned, as this is useful
information. This may at first seem like an error (since duplicates are returned when roll=TRUE)

but is correct. If the dates in the i table are required, these can be appended afterwards, but this

is rarely needed in practice. See examples.

2.17 Difference to [.data.frame ?

Like a data.frame, the comma is optional inside [] when j is missing. However unlike with a
data.frame a single unnamed argument refers to i rather than j. For example DT[3] returns the
3rd row as a 1 row data.table rather than DF[3] which returns the 3rd column as a vector. DT[3]
is identical to DT[3,] unlike data.frame’s. The i argument of matrix, data.frame and data.table
subsetting using ’[is analogous to the 'where’ clause in SQL. In data.table’s when long expressions
of column names appear as the i, or a join expression, we do not have to remember the comma

at the end of the line. In a data.table if the i is missing, thats when you have to remember the
comma, but at the beginning, so that the argument aligns to the j (j is analogous to ’select’ clause
in SQL). data.table’s can be treated as a list (since they are a list as are data.frame’s) by column
index using [[just as a data.frame e.g. DT[[3]] is identical to DF[3] and DF][[3]].

As with a data.frame a 1 row subset returns a 1 row data.table. As with data.frame a 1
column subset (or in data.table an expression of column names returning a vector) returns a vector.
However unlike data.frame there is no drop argument. The type of j’s result determines the result
e.g. DT[,b] returns a vector, DT[list(b)] returns a 1-column data.table. When no j clause is
present, a data.table subset will always return a data.table even if only one row is returned (unlike
matrix subsetting, but like data.frame subsetting).

is analogous to ’select * from DT where a>3 order by b’ in SQL. Ordering is a select of all
the rows, but in a different order. Another analogy is DT[,sum(b),by="c"][c=="f00"] compared to
"select sum(b) from DT group by ¢ having c=="foo””. However, as noted under 'by’ above this is
more efficiently implemented using setkey (DT,c) ;DT["foo",sum(b) ,mult="all"].

If the j expression returns data and has side-effects but only the side-effects are required, the j
expression can be wrapped with invisible(), eg: DT hist(colB),by=colA].

3 Questions relating to compute time
3.1 I have 20 columns in data.table x. Why is an expression of one
column so quick?

Several reasons:

e Only that column is grouped, the other 19 are ignored because data.table inspects the j
expression and realises it doesn’t use the other columns.

e One memory allocation is made for the largest group only, then that memory is re-used for
the other groups, there is very little garbage to collect.

e R is an in memory column store i.e. the columns are contiguous in RAM. Page fetches from
RAM into L2 cache are minimised.

3.2 Idon’t have a key on a large table, but grouping is still really quick.
Why is that?

data.table uses radix sorting. This is significantly faster than other sort algorithms. Radix is
specifically for integers only, see 7base: :sort.list(x,method="radix").

This is also one reason why setkey () is quick.

When no key is set, or we group in a different order from that of the key, we call it an ad hoc

by.

3.3 Why is grouping by columns in the key faster than an ad hoc by?

Because each group is contiguous in RAM, thereby minimising page fetches, and memory can be
copied in bulk rather than looping.

4 Error messages

4.1 Could not find function "DT"
See FAQ 2.6 and FAQ 2.7.

4.2 1 have created a package that depends on data.table. How do
I ensure my package is datatable-aware so that inheritance from
data.frame still works?

You don’t need to do anything special. As long as your package imports or depends on data.table,
your package is detected as datatable-aware.

4.3 Why does [.data.table now have a drop argument from v1.57

So that data.table can inherit from data.frame without using If we used ... then invalid
argument names would not be caught and the convenience of test 147 would be lost.

The drop argument is never used by [.data.table; it is a placeholder for non data.table
aware packages when they treat the data.table as if it were a data.frame.

4.4 unused argument(s) (MySum = sum(v))

This error is generated by DT[,MySum=sum(v)]. DT[,list(MySum=sum(v))] was intended, or
DT[, j=list (MySum=sum(v))].

5 General questions about the package

5.1 v1.3 appears to be missing from the CRAN archive ?

That is correct. v1.3 was available on R-Forge only. There were several large changes internally
and these took some time to test in development.

5.2 Is data.table compatible with S-plus ?
Not currently.
e A few core parts of the package are written in C and use internal R functions and R structures.

e The package uses lexical scoping which is one of the differences between R and S-plus ex-
plained by R FAQ 3.3.1.

5.3 Is it available for Linux, Mac and Windows?

Yes, for both 32-bit and 64-bit on all platforms. Thanks to CRAN and R-Forge. There are no
special or OS-specific libraries used.

5.4 1 think it’s great. What can I do?

Please send suggestions, bug reports and enhancement requests to datatable-help@lists.r-forge.r-
project.org. This helps make the package better. The list is public and archived.

Please do vote for the package at http://crantastic.org/packages/data-table. This helps
encourage the developers. If you have time to write a comment too, that can help others in the
community. Just simply clicking that you use the package, though, is much appreciated.

You can join the project and change the code and/or documentation yourself.

5.5 I think it’s not great. How do I warn others about my experience?

Please put your vote and comments on http://crantastic.org/packages/data-table. Please
make it constructive so we have a chance to improve.

10

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Lexical-scoping
mailto:datatable-help@lists.r-forge.r-project.org
mailto:datatable-help@lists.r-forge.r-project.org
http://crantastic.org/packages/data-table
http://crantastic.org/packages/data-table

5.6 I have a question. I know the posting guide tells me to contact the
maintainer (NOT r-help), but that’s just two people. Is there a
larger group of people I can ask?

Yes. You can post to datatable-help@lists.r-forge.r-project.org. It’s like r-help, but just for this
package. Feel free to answer questions there, too.
5.7 Where are the datatable-help archives?

http://lists.r-forge.r-project.org/pipermail/datatable-help/

5.8 I'd prefer not to contact datatable-help, can I mail just one or two
people privately?

Sure. You're more likely to get a faster answer from datatable-help, though.

5.9 Why is this FAQ a pdf? Can the FAQ moved to a website?

This FAQ is a vignette written using Sweave. The benefits of Sweave include the following:

e We include R code in the vignettes. This code is actually run when the file is created, not
copy and pasted.

e This document is reproducible. Grab the .Rnw and you can run it yourself.

e CRAN checks the package (including running vignettes) every night on Linux, Mac and
Windows, both 32bit and 64bit. Results are posted to http://cran.r-project.org/web/
checks/check_results_data.table.html. Included there are results from r-devel (i.e. not
yet released R). That serves as a very useful early warning system for any potential future
issues as R itself develops.

e This file is bound into each version of the package. The package is not accepted on CRAN
unless this file passes checks. Each version of the package will have its own FAQ file which
will be relevant for that version. Contrast this to a single website, which can be ambiguous
if the answer depends on the version.

e You can open it offline, from your R prompt using vignette().

e You can extract the code from the document and play with it using
edit(vignette("datatable-faq")) or edit(vignette("datatable-timings")).

e It prints out easily.
e It’s quicker and easier for us to write and maintain the FAQ in .Rnw form.

Having said all that, a wiki format may be quicker and easier for users to contribute documentation
and examples.

11

mailto:datatable-help@lists.r-forge.r-project.org
http://lists.r-forge.r-project.org/pipermail/datatable-help/
http://cran.r-project.org/web/checks/check_results_data.table.html
http://cran.r-project.org/web/checks/check_results_data.table.html

	Beginner FAQs
	Why does DT[,5] return 5 ?
	Why does DT[,"region"] return "region"?
	Why does DT[,region] return a vector? I'd like a 1-column data.table. There is no drop argument like I'm used to in data.frame.
	Why does DT[,x,y,z] not work? I wanted the 3 columns x,y and z.
	I assigned a variable mycol="x" but then DT[,mycol] returns "x". How do I get it to look up the column name contained in the mycol variable?
	Ok but I don't know the expressions in advance. How do I programatically pass them in?
	This is really hard. What's the point ?
	OK, I'm starting to see what data.table is about, but why didn't you enhance data.frame in R? Why does it have to be a new package?
	Why are the defaults the way they are? Why does it work the way it does?
	Isn't this already done by with() and subset() in base?
	Why does X[Y] return all the columns from Y too? Shouldn't it return a subset of X?
	What is the difference between X[Y] and merge(X,Y)?
	Anything else about X[Y,sum(foo*bar)]?
	That's nice but what if I don't want by without by?

	General syntax
	How can I avoid writing a really long j expression? You've said I should use the column names, but I've got loads of them.
	Why is the default for mult now "all"?
	I'm using c() in the j and getting strange results.
	I have built up a complex table with many columns. I want to use it as a template for a new table; i.e., create a new table with no rows, but with the column types copied from my table. Can I do that easily?
	Is a NULL data.table the same as DT[0]?
	Why has the DT() alias been removed?
	But my code uses j=DT(...) and it works. The previous FAQ says that DT() has been removed.
	What are the scoping rules for j expressions?
	Can I trace the j expression as it runs through the groups?
	Inside each group, why is the group variable a long vector containing the same value repeated?
	Only the first 10 rows are printed, how do I print more?
	With an X[Y] join, what if X contains a column called "Y"?
	X[Z[Y]] is failing because X contains a column "Y". I want it to use the table Y in calling scope.
	Can you explain further why data.table is inspired by A[B] syntax in base?
	I've heard that the syntax is analogous to SQL?
	What is the thinking behind rolling joins?
	 Difference to [.data.frame ?

	Questions relating to compute time
	I have 20 columns in data.table x. Why is an expression of one column so quick?
	I don't have a key on a large table, but grouping is still really quick. Why is that?
	Why is grouping by columns in the key faster than an ad hoc by?

	Error messages
	Could not find function "DT"
	I have created a package that depends on data.table. How do I ensure my package is datatable-aware so that inheritance from data.frame still works?
	Why does [.data.table now have a drop argument from v1.5?
	unused argument(s) (MySum = sum(v))

	General questions about the package
	v1.3 appears to be missing from the CRAN archive ?
	Is data.table compatible with S-plus ?
	Is it available for Linux, Mac and Windows?
	I think it's great. What can I do?
	I think it's not great. How do I warn others about my experience?
	I have a question. I know the posting guide tells me to contact the maintainer (NOT r-help), but that's just two people. Is there a larger group of people I can ask?
	Where are the datatable-help archives?
	I'd prefer not to contact datatable-help, can I mail just one or two people privately?
	Why is this FAQ a pdf? Can the FAQ moved to a website?

