
Introduction to the data.table Package in R

Matthew Dowle

May 3, 2010

Introduction

This vignette is aimed at those who are already familiar with R, in particular creating and using
objects of class data.frame. We aim for this quick introduction to be readable in 10 minutes,
covering the main features in brief. The main features are the 3 numbered section titles: 1.Keys,
2.Fast Grouping, 3.Fast time series join. For the context that this document sits please briefly
check the last section, Further Resources.

data.table is not automatically better or faster. The user has to climb a short learning curve,
experiment, and then use the features well. For example this document explains the difference
between a vector scan and a binary search. Both extract methods are available. If a user continues
to use vector scans though, as they are used to in a data.frame, it will work but they will miss out
on the benefits that the package provides.

Creation

Recall that we create a data.frame using the function data.frame().

> df = data.frame(x=c("b","b","b","a","a"),v=rnorm(5))

> df

x v
1 b -1.8094206
2 b 0.5852195
3 b 0.7463882
4 a -1.1401348
5 a 0.2978855

We create a data.table in exactly the same way.

> dt = data.table(x=c("b","b","b","a","a"),v=rnorm(5))

> dt

x v
[1,] b 0.5637146
[2,] b -0.3064082
[3,] b -0.7271670
[4,] a -2.0425226
[5,] a -0.6564449

Observe that a data.table prints the row numbers slightly differently. There is nothing significant
about that. We can also convert existing data.frame objects to data.table.

> cars = data.table(cars)

> head(cars)

1

speed dist
[1,] 4 2
[2,] 4 10
[3,] 7 4
[4,] 7 22
[5,] 8 16
[6,] 9 10

We have just created two data.tables: dt and cars. It is often useful to see a list of all our data.tables
in memory.

> tables()

NAME NROW MB COLS KEY
[1,] cars 50 1 speed,dist
[2,] dt 5 1 x,v
Total: 2MB

The MB column is useful to quickly assess memory use and to spot if any redundant tables can
be removed to free up memory. Just like data.frame’s, data.table’s must fit inside RAM.

Some users regularly work with 20 or more tables in memory, rather like a database. The result
of tables() is itself a data.table, returned silently, so that tables() can be used in programs. tables()
is unrelated to the base function table().

Also note that data.table() automatically converts character vectors to factor.

> sapply(dt,class)

x v
"factor" "numeric"

As the user you should vary rarely need know that this has occurred. See ?factor if you are
unfamiliar with factors. Factors will appear to you as though they are character columns. You can
refer to them just as though they are character.

You may have noticed the empty column KEY from tables() above. This is the subject of
the next section, the first of the 3 main features of the package.

1. Keys

Lets start by considering data.frame, specifically rownames. Or in English row names. That is,
the multiple names belonging to the single row. The multiple names belonging to the single row?
That is not what we are used to in a data.frame. We know that each row has at most one name.
A person has at least two names, a first name and a second name. That is useful to organise a
telephone directory for example which is sorted by surname then first name. But each row in a
data.frame can only have one name.

A key is one or more columns of rownames. These columns may be integer, factor or other
classes, not just character. Furthermore, the rows are sorted by the key. Therefore a data.table
can have at most one key, because it cannot be sorted in more than one way.

Uniqueness is not enforced i.e. duplicate key values are allowed. Since the rows are sorted by
the key, any duplicates in the key will appear consecutively.

Lets remind ourselves of our tables.

> tables()

NAME NROW MB COLS KEY
[1,] cars 50 1 speed,dist
[2,] dt 5 1 x,v
Total: 2MB

2

> dt

x v
[1,] b 0.5637146
[2,] b -0.3064082
[3,] b -0.7271670
[4,] a -2.0425226
[5,] a -0.6564449

No keys have been set yet. We can use data.frame syntax in a data.table too.

> dt[2,]

x v
[1,] b -0.3064082

> dt[dt$x == "b",]

x v
[1,] b 0.5637146
[2,] b -0.3064082
[3,] b -0.7271670

But since there are no rownames the following does not work.

> cat(try(dt["b",],silent=TRUE))

Error in `[.data.table`(dt, "b",) :
The data.table has no key but i is character. Call setkey first, see ?setkey.

The error message tells us we need to use setkey().

> setkey(dt,x) # or key(dt)="x" if you prefer

> dt

x v
[1,] a -2.0425226
[2,] a -0.6564449
[3,] b 0.5637146
[4,] b -0.3064082
[5,] b -0.7271670

Notice that the rows in dt have been re-ordered by x. The two "a" rows have moved to the
top. We can confirm that dt does indeed have a key using haskey(), key(), attributes(), or
just running tables().

> tables()

NAME NROW MB COLS KEY
[1,] cars 50 1 speed,dist
[2,] dt 5 1 x,v x
Total: 2MB

Now we are sure that dt has a key, lets try again.

> dt["b",]

x v
[1,] b 0.5637146

3

Since there are duplicates in this key (i.e. repeated values of "b") the subset returns the first
row in that group, by default. The mult argument (short for multiple) controls this.

> dt["b",mult="first"]

x v
[1,] b 0.5637146

> dt["b",mult="last"]

x v
[1,] b -0.727167

> dt["b",mult="all"]

x v
[1,] b 0.5637146
[2,] b -0.3064082
[3,] b -0.7271670

Lets now create a new data.frame. We will make it large enough to demonstrate the difference
between a vector scan and a binary search.

> grpsize = ceiling(1e7/26^2) # 10 million rows, 676 groups

[1] 14793

> tt=system.time(DF <- data.frame(

+ x=rep(factor(LETTERS),each=26*grpsize),

+ y=rep(factor(letters),each=grpsize),

+ v=runif(grpsize*26^2))

+)

user system elapsed
4.204 1.836 6.042

> head(DF,3)

x y v
1 A a 0.9965158
2 A a 0.1437145
3 A a 0.9244377

> tail(DF,3)

x y v
10000066 Z z 0.6737062
10000067 Z z 0.2204626
10000068 Z z 0.4198879

> dim(DF)

[1] 10000068 3

We might say that R has created a 3 column table and inserted 10,000,068 rows. It took 6.042
secs, so it inserted 1,655,092 rows per second. That is normal in base R.

Lets extract an arbitrary group from the data.frame DF.

> tt=system.time(ans1 <- DF[DF$x=="R" & DF$y=="h",]) # 'vector scan'

4

user system elapsed
4.216 0.976 5.194

> head(ans1,3)

x y v
6642058 R h 0.9817642
6642059 R h 0.6806054
6642060 R h 0.1608450

> dim(ans1)

[1] 14793 3

Now we convert to a data.table and extract the same group.

> DT = data.table(DF)

> setkey(DT,x,y)

> ss=system.time(ans2 <- DT[J("R","h"),mult="all"]) # 'binary search'

user system elapsed
0.008 0.004 0.010

> mapply(identical,ans1,ans2)

x y v
TRUE TRUE TRUE

At 0.010 seconds, this was 519 times faster than 5.194 seconds, and produced precisely the
same result. If you are thinking that a few seconds is not much to save, its the relative speedup
thats important. The vector scan is linear, but the binary search is O(log n). It scales. If a task
taking 10 hours is sped up by 100 times to 6 minutes, that is significant1.

What does the J() do?
Was it really this, or was it something slow about using data.frame syntax in a data.table? Its

exactly the same :
We can do vector scans in data.table too.

> system.time(ans1 <- DF[DF$x=="R" & DF$y=="h",])

user system elapsed
4.217 0.964 5.180

> system.time(ans2 <- DT[DT$x=="R" & DT$y=="h",])

user system elapsed
4.228 1.032 5.260

> mapply(identical,ans1,ans2)

x y v
TRUE TRUE TRUE

> system.time(ans3 <- DT[x=="R" & y=="h",])

user system elapsed
4.252 1.028 5.281

> identical(ans2,ans3)

1We wonder how many people are deploying parallel techniques to code that is vector scanning

5

[1] TRUE

If the phone book analogy helped, then this should not be surprising. We use the key. We take
advantage of the fact that the table is sorted and we use binary search to find the matching rows.
We didn’t vector scan; we didn’t use ==.

When we used DT$x=="R" we scanned the entire column x, testing each and every value to see
it equalled ”R”. We did that again in the y column, testing for ”h”. Then & combined the two
logical results to create a single logical vector which was passed to the [method which searched it
for TRUE and returned those rows. These were vectorized operations. They occurred internally in
R and were very fast, but they were scans. We did those scans because we wrote that R code.

When i is itself a data.table, we say that we are joining the two data.table’s. In this case we
are joining DT to the 1 row, 2 column table returned by data.table("R","h"). Since we do this
a lot, there is an alias for data.table called J(), short for join.

> identical(DT[J("R","h"),mult="all"],

+ DT[data.table("R","h"),mult="all"])

[1] TRUE

Both vector scanning, and binary search, are available in data.table, but one way of using
data.table is much better than the other.

The join syntax is short, fast to write and easy to maintain. Passing a data.table into a
data.table subset, is similar to base R which allows a matrix to be passed into a matrix subset.
2. There are other types of join and further arguments which are beyond the scope of this quick
introduction.

The merge method of data.table is essentially x[y], but where the columns of x are included
in the result. See FAQ 1.10.

This first section has been about the first argument to the [, namely i. The next section is do
with the 2nd argument.

2. Fast grouping

The second argument to [is j and may be one or more expressions of column names, as if the
column names were variables.

> dt[,sum(v)]

[1] -3.168828

When we supply a j expression and a ’by’ list of expressions, the j expression is repeated for
each group defined by the ’by’.

> dt[,sum(v),by=x]

x V1
[1,] a -2.6989675
[2,] b -0.4698606

The ’by’ in data.table is fast. Lets compare to tapply.

> ttt=system.time(tt <- tapply(DTv,DTx,sum)); ttt

user system elapsed
9.245 0.940 10.187

> sss=system.time(ss <- DT[,sum(v),by=x]); sss

2Subsetting a key’d data.table by an n-column data.table is consistent with subsetting a n-dimension array by
an n-column matrix

6

user system elapsed
0.528 0.288 0.816

> head(tt)

A B C D E F
192321.2 191800.4 192785.3 192234.7 192159.0 192466.3

> head(ss)

x V1
[1,] A 192321.2
[2,] B 191800.4
[3,] C 192785.3
[4,] D 192234.7
[5,] E 192159.0
[6,] F 192466.3

> identical(as.vector(tt), ss$V1)

[1] TRUE

At 0.816sec, this was 12 times faster than 10.187sec, and produced precisely the same result.
Lets group by two columns.

> ttt=system.time(tt <- tapply(DT$v,list(DT$x,DT$y),sum)); ttt

user system elapsed
10.556 1.324 11.880

> sss=system.time(ss <- DT[,sum(v),by="x,y"]); sss

user system elapsed
0.552 0.360 0.917

> tt[1:5,1:5]

a b c d e
A 7409.614 7367.789 7398.255 7442.025 7364.313
B 7408.831 7366.444 7428.906 7316.498 7338.072
C 7389.100 7413.650 7442.931 7392.206 7417.141
D 7414.040 7437.353 7412.524 7432.594 7307.279
E 7407.788 7347.737 7413.891 7408.933 7382.637

> head(ss)

x y V1
[1,] A a 7409.614
[2,] A b 7367.789
[3,] A c 7398.255
[4,] A d 7442.025
[5,] A e 7364.313
[6,] A f 7426.731

> identical(as.vector(t(tt)), ss$V1)

[1] TRUE

This was 12 times faster, and the syntax a little simpler and easier to read.
The following features are mentioned only briefly here. Further examples are in the FAQs.

� To return several expressions, pass a list() to j.

� Each item of the list is recycled to match the length of the longest item.

� You can pass a list() of expressions of column names to by.

7

3. Fast time series join

This is also known as last observation carried forward (LOCF) or a rolling join.
Recall that x[i] is a join between data.table x and data.table i. If i has 2 columns, the first

column is matched to the first column of the key of x, and the 2nd column to the 2nd. An equi-join
is performed, meaning that the values must be equal.

The syntax for fast rolling join is
x[i,roll=TRUE]
As before the first column of i is matched to x where the values are equal. The last column

of i though, the 2nd one in this example, is treated specially. If no match is found, then the row
before is returned, provided the first column still matches.

For examples see example("[.data.table")

Other resources

This was a quick start guide. Further resources include :

� The help page describes each and every argument: ?"[.data.table"

� The FAQs deal with distinct topics: vignette("datatable-faq")

� The performance tests contain more examples: vignette("datatable-timings")

� test.data.table contains over 150 low level tests of the features: test.data.table()

� Website (no content yet): http://datatable.r-forge.r-project.org/

� Presentations:

– http://files.meetup.com/1406240/Data%20munging%20with%20SQL%20and%20R.pdf

– http://www.londonr.org/LondonR-20090331/data.table.LondonR.pdf

� YouTube Demo: http://www.youtube.com/watch?v=rvT8XThGA8o

� R-Forge commit logs: http://lists.r-forge.r-project.org/pipermail/datatable-commits/

� Mailing list : datatable-help@lists.r-forge.r-project.org

8

http://datatable.r-forge.r-project.org/
http://files.meetup.com/1406240/Data%20munging%20with%20SQL%20and%20R.pdf
http://www.londonr.org/LondonR-20090331/data.table.LondonR.pdf
http://www.youtube.com/watch?v=rvT8XThGA8o
http://lists.r-forge.r-project.org/pipermail/datatable-commits/
mailto:datatable-help@lists.r-forge.r-project.org

