
of generated series is required, suggesting the use 
of a multi-site weather generator. Algorithms to 
represent historical spatial dependences of weather 
variables have been developed e.g. by Wilks, 1998, 
Khalili et al., 2009, Serinaldi, 2009, Bàrdossy and 
Pegram, 2009, Kleiber et al., 2013. Wilks (1998) 
simulated rainfall occurrences through a generation 
of combinations of Gaussian random variables and 
established a relationship for each pair of rain 
gauges between Gaussian variables correlation and 
binary (precipitation occurrence) values. In this 
way, weather generators can reproduce at least 
partially spatial correlations; this approach is widely 
cited in literature (Mehrotra et al., 2006, Brissette 
et al., 2007, Serinaldi, 2009, Thompson et al., 2007, 
Mhanna and Bauwens, 2011, Kleiber et al., 2012). 
Recently, statistical methods useful for weather 
generation, originally developed in environmetrics 
and econometrics, were made available in the R 
platform (R Core Team, 2014). In this context, 
a suite of two weather generator tools was 
developed within the R environment through 
the creation of two packages: RMAWGEN and 
RGENERATEPREC. In particular, RMAWGEN 
(R Multisite Auto-regressive Weather Generator 
- Cordano and Eccel, 2011) was developed to 
cope with the demand for high-resolution climatic 

Tools for stochastic weather series generation  
in R environment
Emanuele Cordano1,2, Emanuele Eccel1*

It
al

ia
n 

Jo
ur

na
l o

f A
gr

om
et

eo
ro

lo
gy

 - 
3/

20
16

R
iv

is
ta

 I
ta

lia
na

 d
i A

gr
om

et
eo

ro
lo

gi
a 

- 3
/2

01
6

31

1. INTRODUCTION
Stochastic generators of weather variables, called 
“Weather Generators” (WGs), have been widely 
developed in the recent decades for hydrological 
and agro-ecological applications (Richardson, 
1981, Racsko et al., 1991, Semenov and Barrow, 
1997, Parlange and Katz, 2000, Liu et al., 2009, 
Chen et al., 2012, Chen and Brissette, 2014). 
Applications in agricultural meteorology require 
the contemporary generation of series of more 
than one quantity, at least temperature and 
precipitation, and possibly more (Rocca et al., 
2012), e.g. for some pest modelling, or for water 
balance modelling. A typical application of WGs is 
the reproduction of daily weather time series from 
downscaled monthly climate predictions (Mearns 
et al., 2001, Wilks and Wilby, 1999, Qian et al., 
2002, Semenov and Stratonovitch, 2010). If high-
resolution application models are to be used with 
downscaled series, a meteorological consistence 

Abstract: The “R” packages RMAWGEN and RGENERATEPREC aim to generate daily maximum and minimum 
temperature and precipitation series preserving the meteorological coherence with observations, required for many 
agro-ecological applications. The implemented methods are designed to work with existing tools implemented in the R 
environment, such as vector autoregressive models (VAR) and other extensions of generalized linear models with logit 
regression, for generation of daily precipitation series; one aim of the algorithm is the conservation of the temporal and 
spatial correlations among variables. The internal parameters of the weather generator are calibrated from observed 
time series. The article describes the main features of the presented packages and an application to a dataset of daily 
weather time series recorded at 28 sites in Trentino (Italy) and its neighbourhood. 
Keywords: Multisite weather generators, vector auto-regression, logit regression, temperature, precipitation, climate.

Riassunto: I pacchetti “R” RMAWGEN e RGENERATEPREC generano serie giornaliere di temperature massime e 
minime e precipitazioni preservando la coerenza meteorologica con le osservazioni, richiesta per molte applicazioni 
agro-ecologiche. I metodi si avvalgono dell’uso di librerie già implementate in ambiente R, in particolare modelli 
vettoriali auto regressivi (VAR), per mantenere le correlazioni temporali e spaziali tra le variabili, ed altre estensioni 
di modelli generalizzati con regressione logistica, per la generazione delle serie di precipitazioni. Uno degli scopi 
dell’algoritmo è la conservazione della correlazione spaziale tra le variabili. I parametri interni dei weather generator 
sono calibrati dalle serie osservate. L’articolo descrive le principali caratteristiche dei pacchetti presentati e le 
applicazioni ad un archivio di serie meteorologiche giornaliere registrate in 28 siti in Trentino e regioni limitrofe.
Parole chiave: Generatori meteorologici stocastici multisito, auto-regressione vettoriale, regressione logit, 
temperatura, precipitazione, clima.
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were proposed to assess the best value of p (Akaike 
and May, 1981; Hannan and Quinn, 1979; Schwarz, 
1978; Lütkepohl, 2007). Pfaff (2008b) suggests four 
indices: AIC(p), HQ(p), SC(p), FPE(p), where p is 
the lag order. This information criteria to select the 
optimal value of p are implemented in R package 
“vars”, and then utilized by package “RMAWGEN” 
and in the examples shown in this article. In 
RMAWGEN, the implemented methods for VAR 
parameters refer to the function VAR of “vars” 
package (Pfaff, 2008b). Further theoretical details 
about VAR models can be found in Lütkepohl 
(2007), Hamilton (1994), and Pfaff (2008b).

2.2 VAR diagnostics
Once built the VAR(p) model and estimated its 
coefficients, the model residuals can be processed 
through diagnostic tests, which can be summarized 
in the following, borrowed from econometrics 
(Pfaff, 2008a):
•  Multivariate Portmanteau and Breusch-Godfrey 

(Lagrange Multiplier tests), which verify the 
absence of time-autocorrelation of the VAR(p) 
residuals;

•  Jarque-Bera and multivariate skewness and 
kurtosis tests, which validate the multivariate 
Gaussian probability distribution of the VAR(p) 
residuals;

•  ARCH-LM tests, which verify the absence of 
heteroskedasticity of the VAR(p) residuals.

The former verifies that the residuals, calculated by 
instrumental time series, are not auto-correlated. 
The second verifies that they are multi-normally 
distributed, i.e., its skewness and kurtosis are null. 
In case of stochastic generation, this condition 
is generally satisfied because the random part 
of the model is a white noise. The third test, 
the ARCH-LM (Auto-Regressive Conditional 
Heteroskedasticity - Lagrange Multiplier) test, 
analyzes the covariance matrix or the variance 
(in a univariate case) of residuals in order to 
verify if the variance of residuals is constant or 
if it varies with time, i.e. its homoskedasticity or 
heteroskedasticity, respectively. Lütkepohl (2007) 
proposed also an ARCH-Portmanteau test for 
residual heteroskedasticity. Further details about 
the tests can be found in the already quoted works 
and in Peña and Rodriguez (2002), and Mahdi and 
Ian McLeod (2012). 

2.3 Gaussianization of continuous variables
VAR models work correctly for normally distributed 
variables. This requires a normalization procedure 

scenarios but also to create a flexible tool for 
engineers and researchers in agro-environmental 
modelling. For this reason, RMAWGEN uses 
existing R tools for vector auto-regressive models 
(Pfaff, 2008b), employed for generation of weather 
variables (Adenomon and Oyejola, 2013; Luguterah 
et al., 2013; Shahin et al., 2014), and to let the 
users work with other R spatio-temporal tools for 
data analysis and visualization (Bivand et al., 2008; 
Loecher and Berlin School of Economics and Law, 
2012; Kahle and Wickham, 2013).
The paper is organized in the following sections: a 
description of the mathematical methods applied 
in the weather generators; the usage of the weather 
generator with an example on a multi-site dataset, 
including model validation through statistical tests; 
and, finally, some concluding remarks.

2. METHODS
The following methods were utilized for generation 
of daily temperature series:

• Vector Auto-Regressive models (VAR);
• Gaussianization of continuous variables;

while precipitation generation is based on:
•  Single-Site Logistic Regression for 

Precipitation 
•  Occurrence based on Generalized Linear 

Models (GLMs);
•  Multi-site generation of random values based 

on Wilks’ correlation matrix;
•  Random Generation of Precipitation Amount 

for each site using simultaneous precipitation 
occurrences as predictors.

2.1 Vector Auto-Regressive models (VAR)
The basic idea of RMAWGEN consists on the 
generation of daily precipitation and temperature 
by using Vector Auto-Regressive Models (VARs). 
A set of K random variables can be described by a 
Vector Auto-Regressive Model VAR(K,p) as follows 
(Lütkepohl, 2007; Hamilton, 1994; Pfaff, 2008a):

x t = A1 x t-1 + … + Ap x t-p + u t   (1)   (1)

where xt is a K-dimensional vector representing 
the set of weather variables generated at day t by 
the model, called “endogenous” variables, Ai is a 
coefficient matrix K x K for i = 1…p and p is the 
auto-regression order. In absence of exogenous 
variables, ut is a standard white noise. 
The methods to estimate the parameters of a 
VAR model, as defined by equation (1), are 
properly illustrated in Lütkepohl (2007). The 
auto-regression order must be found before VAR 
parameter estimation; some information criteria 
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proposed an iterative method based on Principal 
Component Analysis (PCA). This method is 
organized in a loop where each iteration contains 
the following steps:

1.  One-dimensional Gaussianization of each 
component of x, i.e., Marginal Gaussianization 
(in this step, only the marginal probability 
distributions are taken into account);

2.  Orthonormal transformation of the 
coordinates based on the eigenvector 
matrix of the covariance matrix according to 
Principal Component Analysis (PCA).

The variables become marginally Gaussian and 
then, by rotation, the marginal Gaussianization is 
calculated in the other directions of the variable 
coordinate space. Later, Laparra et al. (2011) 
generalized this transformation and called 
it “Rotation-based Iterative Gaussianization 
(RBIG) transform”, where the iterative process 
can be coupled with other kinds of rotation like 
Independent Component Analysis (ICA) or 
Random Rotation (RND). The convergence of 
these methods is explained in Laparra et al. (2011). 
However, as suggested by Laparra et al. (2009), 
in package RMAWGEN, the Gaussianization is 
performed through PCA rotation (GPCA), because 
of the lower computational burden and the 
acceptable quality of results.

for daily meteorological values of both temperature 
and precipitation, which can be formally expressed 
as: 

x t =Gm(z t) (2) 

zt = Gm-1(x t) (3) 

 (2)

where zt is the meteorological time series and 
Gm is a univariate or multivariate function (so 
that xt is multi-normally distributed and can vary 
according to time, month, and season: subscript m 
is an indicator of the month. Gm contains all the 
information on the variable transformation and can 
be inverted:

x t =Gm(z t) (2) 

zt = Gm-1(x t) (3) 
 (3)

In this case, the function Gm transforms a 
meteorological variable, whose probability 
distribution is different for each month, into a 
random variable with equal probability distribution 
for all months of the year. The function Gm resumes 
the “climatic” properties of the m-th month and 
is operationally determined and parameterized 
according to the meteorological variable, by 
sampling monthly the historical time series. This 
function invokes a coordinate transformation which 
is called “Gaussianization” (Erdogmus et al., 2006; 
Laparra et al., 2009). 
The one-dimensional Gaussianization is a 
transformation from a random variable z, whose 
cumulate probability distribution is Fz(z), into a 
Gaussian-distributed one x. It can be analytically 
expressed as follows:

(F (z ))Fx z
1

G
−=    (4) 

(x )( )FFz G
1

z
−=    (5) 

  (4)

where FG is the Gaussian cumulative function with 
zero mean and standard deviation equal to 1. If 
Fz(z) is an invertible function, the transformation 
between x and y is also invertible:

(F (z ))Fx z
1

G
−=    (4) 

(x )( )FFz G
1

z
−=    (5)   (5)

Finally, the transformation between x and z is done 
by applying the inverse cumulated probability 
function of x and z, respectively, and vice versa. In 
case z is a seasonally-changing weather variable, 
the Gaussianization process can take into account 
its dependency on month or season: in (2), Gm is 
defi ned as depending on month (Fig. 1).
Similarly to the one-dimensional case, it is 
intuitive that an invertible function exists between 
any multi-dimensional random variable and a 
Gaussian variable with the same dimensions (Chen 
and Gopinath, 2000). Nevertheless, an explicit 
form of such a function is not as easy to fi nd as 
in the one-dimensional case and might require 
high computational effort. Laparra et al. (2009) 

Fig. 1 - Monthly relationship between minimum daily tem-
perature (bimodal) and the transformed Gaussian series x 
with the respective frequency histogram.
Fig. 1 - Relazione mensile tra la temperature minima gior-
naliera (bimodale) e la serie gaussiana trasformata x con i 
rispettivi istogrammi di frequenza.
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the previous day(s), and two exogenous variables: 
(II) daily maximum temperature anomalies (see next 
section “Case study”), and (III) the day of the year. The 
logit regression is implemented through a generalized 
linear model (McCullagh and Nelder, 1989, Chambers 
and Hastie, 1992), which generates time series of 
daily precipitation occurrence probability similarly 
to VAR implementation in package “vars”. Finally, 
the probability value [p0i]t is calculated singularly for 
each site and is not conditioned to the precipitation 
occurrence at the neighbouring sites. 
The computation reported in RGENERATEPREC 
makes use of an R implementation of the normal 
copula (Yan, 2007, Kojadinovic and Yan, 2010) and 
the marginal probability values p0k for each station 
on a monthly base. Finally, precipitation amount in 
the wet days is generated by inverting a parametric 
probability distribution (Breinl et al., 2013, Furrer 
and Katz, 2008, Li et al., 2012) or by inverting the 
non-parametric frequency distribution obtained by 
observations (Cordano, 2015a, 2015b).

3. CASE STUDY

3.1 Geographical description 
and meteorological series
A dataset containing daily time series is included 
in RMAWGEN dataset. The dataset, called 
“trentino”, contains daily minimum and maximum 
temperatures and precipitation form 1950 to 
2007. The weather data had been recorded and 
homogenized at 59 sites in Trentino region (North-
Eastern Italian Alps) and its neighbourhood (Eccel 
et al., 2012). 
The geography of the area is characterized by a 
valley system, ranging between 70 m a.s.l. (Lake 
Garda) to 3769 m (Mount Cevedale). The area 
covered by the weather station network can be 
ascribed to a Köppen class ranging from “Cfb” 
(“temperate, middle latitudes climate, with no dry 
season”) to “Dfc” classifi cation (“microthermal 
climate, humid all year round”) in the more 
elevated, mountain areas. Precipitation amounts are 
mostly distributed over two maxima, in the autumn 
(main) and in the spring (secondary), although in 
some mountain areas rainfall peaks in summer (Di 
Piazza and Eccel, 2012).
The region is illustrated in Fig. 2, obtained by 
package RgoogleMaps (Loecher and Berlin 
School of Economics and Law, 2012) and easily 
reproduced by the example script trentino_map.R 
contained in RMAWGEN directory. In this 
application, RMAWGEN model is calibrated for a 
30-year long reference period from 1961 to 1990 
and then utilized for a random generation of daily 
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2.4 Multi-dimensional Generation 
of Precipitation
The marginal gaussianization of intermittent weather 
values, e.g. in presence of zeros, as previously 
described, does not take into account the inter-site 
correlation: the zeros (no precipitation days) are 
randomly Gaussianized and the Gaussianized value 
cannot be affected a priori by the precipitation 
occurrence at another site. If this aspect is not 
dealt with, precipitation generated with simple 
Gaussinized VAR models will lack information and 
the inter-site correlation will be underestimated. 
To fi x this shortcoming, Wilks (1998) introduced 
an algorithm to transform correlation of a 
couple of binary values into correlation of the 
corresponding Gaussian variables. This approach 
is widely applied to the random generation of daily 
precipitation occurrence. The dependence within 
a rainfall gauge network is well known, especially 
as concerns precipitation occurrence, whereas 
the correlation in a VAR is strictly connected to 
the continuous values, like precipitation depth. 
As can be observed, precipitation occurrence is 
better spatially correlated than the value of daily 
precipitation depth. 
In order to describe the correlation among 
precipitation occurrences among several 
sites, RGENERATEPREC was developed 
on Wilks’ approach for the estimation of the 
cross-correlations among raingauges and its 
results compared with that of RMAWGEN. 
RGENERATEPREC generates precipitation 
occurrence and precipitation depth separately. 
According to Wilks’ approach, daily precipitation 
occurrence can be generated by generating 
normally (Gaussian) distributed random numbers 
as follows:

                            (6) [ ] =tiX  
[ ]( ) [ ] ttiG xP ≤

[ ]( )tiG xP >

0 

1

p0i

[ ] tp0i  

(6)

where [Xi]t is the binary state of precipitation 
occurrence in the ith site and on the tth day: 0 (dry 
day/no precipitation occurrence) or 1 (wet day/
precipitation occurrence); [p0i]t is the probability of 
no precipitation occurrence for the ith site and the tth 
day; [xi]t is a normally distributed random variable 
and PG(x) is the cumulate probability function of the 
normalized (Gaussian) distribution. In this work, 
the probability value [p0i]t is conditioned to the state 
of the previous day(s) and other factors, namely it 
is calculated by a logistic auto-regression with the 
following predictors: (I) precipitation occurrence in 
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precipitation and temperature for a 30-year long 
period with the same climatic properties. 

3.2. Temperature generation

3.2.1. Model setting
The daily minimum and maximum temperature 
are generated for the reference period 1961-1990. 
The new variable zt is pre-processed as a vector 
of anomalies containing the observed mean daily 
temperature anomaly and the observed daily 
temperature range, and it is:

( )tt
ttt

t TnTx
2

Tn,s tsTx,

2

TnTx
z −

+
−

+
=   (7) ∪)(

 
(7)

where Txt and Tnt are the observed daily maximum 
and minimum temperature, Tx,st and Tn,st are 
the mean daily climatic values of maximum and 
minimum temperature at each site; they are 
the result of a daily spline interpolation from 
the monthly values; and U is the vector-append 
function. With this deseasonalization, zt is far from a 
Gaussian distribution, but the constraint Txt > Tnt is 
always respected. Consequently, a Gaussian variable 
is found through Gaussianization, as expressed in 

(4), which samples the variable zt monthly at least at 
the first iteration (eq. 2).
Once a time series vector is created for xt, the 
parameters of the GPCA-VAR or VAR model 
are calibrated. Then, a normality test on VAR 
residuals is required and residuals are subsequently 
Gaussianized and normalized through GPCA if they 
are not Gaussian.
To test the effectiveness of the PCA Gaussianization 
and the optimal auto-regression order, four 
different models for random generation were used:
•  [P01] auto-regression order p equal to 1, no PCA 

Gaussianization;
•  [P06] auto-regression order p equal to 6, no PCA 

Gaussianization;
•  [P01GPCA] auto-regression order p equal to 1, 

PCA Gaussianization;
•  [P06GPCA] auto-regression order p equal to 6, 

PCA Gaussianization.

In all the four listed models the observed time 
series were previously deseasonalized ad marginally 
gaussianized. With function “VARselect” in package 
“vars”, it is possible to test auto-regression order 
from 1 to 20 days or more to find the optimal values 
according to the information criteria; the value 
of auto-regression order equal to 6 was selected, 
according to the results of Akaike’s AIC criterion. 

3.2.2. Results: model validation
As proposed by Pfaff (2008), Luetkepohl (2007), 
Hamilton (1994) and other authors, the residuals 
of four VAR models were tested for normality 
and seriality (autocorrelation). The test results 
(summarized in Tab. 1, where significance p-values 
of 0.05 or higher give the same qualitative results) 
indicate that both normality and serial tests are 
successful in case of GPCA with autoregression 
order p equal to 6 (P06GPCA), which, therefore, can 
be considered the best choice, among those tested. 
Other cases yielded very low p-values, resulting 
in unsuccessful verifications. The tests generally 
highlight the importance of gaussianization pre-
processing of temperature.
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Normality test Seriality test

P01 unsuccessful unsuccessful
P06 unsuccessful unsuccessful
P01GPCA successful unsuccessful
P06GPCA successful successful

Tab. 1 - Results of normality and seriality tests for temperature. 
Tab. 1 - Risultati dei test di normalità e serialità per la tem-
peratura. 

Fig. 2 - The weather stations of trentino dataset operating 
in the period 1961-1990 with time series of daily precipita-
tion and temperature: (T) only temperature time series are 
complete with no gaps; (P) only precipitation time series are 
complete with no gaps; (A) both temperature and precipita-
tion time series are complete with no gaps.
Fig. 2 - Le stazioni meteorogiche del data set trentino fun-
zionanti nel periodo 1961-1990 con le serie temporali di 
precipitazione giornaliera e temperatura: (T) solo le serie di 
temperature sono complete; (P) solo le serie di precipitazi-
one sono complete senza lacune; (A) entrambe le serie sono 
complete senza lacune.
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between statistics of observed and modelled series. 
Fig. 3 shows the Quantile-Quantile plot (“Q-Q 
plots”) between the generated and observed daily 
maximum and minimum temperature at station 
T0129 (see Fig. 3). “Q-Q plots” are particularly 
useful, showing distribution fittings between 

The PCA-Gaussianized VAR model aims to preserve 
the probability distribution and spatio-temporal 
correlation of the corresponding observed data. 
Any comparison of daily values being meaningless, 
due to the random generation, the validation of a 
weather generator can only consist on comparisons 

Fig. 3 - Q-Q plots for daily maximum (a) and minimum (b) temperature (generated vs observed) at station T0129 in the 
four seasons.
Fig. 3 - Diagrammi Q-Q per le temperature massime e minime giornaliere (generate contro osservate) per la stazione T0129 
nelle quattro stagioni.

Fig. 4 - Auto- and Cross-correlation for daily maximum (a) and minimum (b) temperature anomalies (generated vs ob-
served). Columns correspond to the four VAR models used in RMAWGEN generations. Rows correspond to the different 
lags used for the computation of crosscorrelation: no lag (0 days), 1 day, 2 and days 7 days.
Fig. 4 - Auto- e cross-correlazione per le anomalie di temperatura massima e minima giornaliera (generate contro osservate). 
Le colonne corrispondono ai quattro modelli VAR usati nelle generazioni di RMAWGEN. Le file corrispondono ai differenti 
lag per il calcolo della correlazione: nessun lag (0 giorni), 1 giorno, 2 giorni e 7 giorni.
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observed and generated series. The quantiles of 
observed and simulated data are plotted for each 
VAR model type and each season (Fig. 3). The 
goodness-of-fit of observed versus generated daily 
temperature is quite satisfactory: most of the points 
appear along the quadrant bisector for all the four 
considered VAR models. 
Fig. 4 shows the autocorrelation and the cross-
correlation of temperature anomaly (observed 
or simulated daily value rescaled to the typical 
climate value, spline-interpolated by monthly 
climatology) referred to each couple of stations and 
for four different lags expressed in days: 0 (cross-
correlation), 1, 2, and 7 days. The correlations 
are plotted with respect to both maximum and 
minimum daily temperature and are calculated 
for each of the implemented VAR models. The 

coefficients obtained from both observed and 
generated time series are very similar and stay on the 
quadrant bisect, especially in case of simultaneous 
correlation (lag 0) and one-day autocorrelations, 
and range between 0.6 and 1.0. As expected, a less 
good agreement is found after a 7-day lag, in the 
cases with p=1 (P01 and P01GPCA); nevertheless, 
correlations are lower (less than 0.25), and become 
less significant. 

3.3 Precipitation generation

3.3.1 Model setting
Daily precipitation is separately generated for the 
reference period 1961-1990. through a random 
generation with an auto-regression based on 
generalized linear models (Chambers and Hastie, 
1992) implemented in the RGENERATEPREC 
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Fig. 5 - Monthly boxplots of fitting Kolmogorov – Smirnov’s tests (generated vs. measured series).
Fig. 5 - Boxplots mensili dei test di adattamento di Kolmogorov – Smirnov (serie generate contro misurate).
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package for a single site and following Wilks’ 
approach for spatial (inter-station) correlations. 
After generation of precipitation occurrences, 
Gaussianized precipitation is calculated through 
a simple linear regression of occurrences making 
use of the observed frequency distribution with 
the addition of a random white noise. Finally, 
precipitation depth is obtained through an inverse 
Gaussianization with the use of the monthly 
non-parametric distribution from the observed 
samples. 

3.3.2 Results: model validation
The following quantities are considered at each station 
in the different months and seasons of the year:

• precipitation depth (Fig. 6); 
• dry spells (Fig. 7); 
•  monthly number of days with precipitation for 

each station (Fig. 8); 
•  probability that no daily precipitation occurs 

at each station or at each pair of stations 
(Mhanna and Bauwens, 2011):
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where k and m are two generic station indicators, t 
is the day indicator, l is a time lag, P[(Xk)t = 0] is the 
probability that no precipitation occurs at station 
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Fig. 6 - Q-Q plots for daily precipitation depth [mm] (gen-
erated vs observed) at stations T0083, T0090 and T0129 in 
the four seasons.
Fig. 6 - Diagrammi Q-Q per l’altezza di precipitazione [mm] 
(generate contro osservata) per le stazioni T0083, T0090 e 
T0129 nelle quattro stagioni.

Fig. 7 - Q-Q plots for dry spell length [days] (generated vs ob-
served) at stations T0083, T0090 and T0129 in the four seasons.
Fig. 7 - Diagrammi Q-Q per la durata dei periodi asciutti 
[giorni] (generate contro osservate) per le stazioni T0083, 
T0090 e T0129 nelle quattro stagioni.

Fig. 8 - Q-Q plots for number of “wet” days per month 
(generated vs observed) at stations T0083,T0090 and T0129 
in the four seasons.
Fig. 8 - Diagrammi Q-Q per il numero di giorni piovosi 
(generati contro osservati) per le stazioni T0083, T0090 e 
T0129 nelle quattro stagioni.

k, [p00k,m]l is the probability that no precipitation 
occurs at both station k and m after a time lag of l 
days (Fig. 9a);
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of the single-site generation, while the others refer 
to the comprehensive multi-site generation. The 
model skill is assessed by testing the goodness of 
distribution fitting of the generated series to the 
measured ones by means of Kolmogorov – Smirnov 
(ks) tests. In order to represent an aggregated set of 
results, the p-values of ks tests are given as monthly 
boxplots for four variables: daily precipitation 
depth, number of days with precipitation, dry 
spell duration, and wet spell duration (Fig. 5). All 
values exceeding the significance level chosen as 
a benchmark (e.g. 0.05) assess that the hypothesis 
that the two samples come from the same 
distribution cannot be excluded. For every one of 
the four variables, every element of the statistics 
(e.g., one of the outliers in the boxplot) represents 
one station for the specific month. It can be seen 
that the cases which fall below the acceptance level 
are very few.
Results can be visually assessed by comparing 
observed and simulated values for each index. 
In this case, we chose three stations chosen at 
random: Cles (T0083, 652 m); Mezzolombardo 

•  probability that daily precipitation occurs 
at each station or at each pair of stations 
(Mhanna and Bauwens, 2011):
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  (9)

where, similarly, P[(Xk)t = 1] is the probability that 
precipitation occurs at station k, [p11k,m]l is the 
probability that precipitation occurs at both stations 
k and m after a time lag of l days (Fig. 9b);

• continuity ratio (Wilks, 1998):
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where Ck,m is the ratio between the expected 
value of precipitation amount at the station k (hk)t, 
conditioned to the precipitation absence at station 
m on the same day, and the same expected value of 
precipitation amount at station k, but conditioned 
to precipitation occurrence at station m (Fig. 10).
The first three items are related to the validation 

Fig. 9 - Probability that no precipitation occurs (a) or pre-
cipitation occurs (b) in each couple of stations (generated vs 
observed) at stations T0083, T0090 and T0129 in the four 
seasons. 
Fig. 9 - Probabilità di non occorrenza di precipitazioni (a) o 
di occorrenza di precipitazioni (b) in ogni coppia di stazioni 
(generate contro osservate) alle stazioni T0083, T0090 e 
T0129 nelle quattro stagioni.

Fig. 10 - Continuity Ratio for each couple of stations (gen-
erated vs observed) at T0083, T0090 and T0129 in the four 
seasons.
Fig. 10 - Rapporto di continuità per ogni coppia di stazi-
oni (generati contro osservati) alle stazioni T0083, T0090 e 
T0129 nelle quattro stagioni.
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(2007), the application of RGENERATEPREC 
produces continuity ratios mostly centred around 
the bisect of the plot, showing a good correlation 
between precipitation amount and occurrence 
among the stations of the dataset.

4. CONCLUSIONS
The goal of this paper was to present new algorithms 
for stochastic generation of daily temperature and 
precipitation fields, implemented within a flexible, 
open source, analytical and statistical environment 
like R, in the form of new libraries. Software 
packages have been made freely available on CRAN 
repository (R Core Team, 2014). RMAWGEN 
carries out generations of weather series through 
Vector Auto-regressive Models; the latter work 
generally well for time-continuous variables, but 
present some critical issues for intermittent weather 
variables like precipitation. The problem can be 
tackled by considering the additional package 
RGENERATEPREC, developed to extend the 
methods applied in RMAWGEN to other models, 
where stochastic weather generations follow 
different algorithms. 
The use of PCA Gaussianization is implemented to 
preserve the complete dependence structure, not 
only the correlation. It is reminded that the marginal 
Gaussianization of observed weather variables at a 
monthly scale means that RMAWGEN approach 
is independent of the statistical distribution of 
variables, and random weather time series can be 
regenerated with the same empirical probability 
distribution of the observed ones or with another 
distribution, assigned a priori.
RMAWGEN and RGENERATEPREC can be 
used separately or also jointly, if the conservation of 
the statistical links between their output is wanted. 
This is the case of an eventual use of the generated 
fields for model applications that require the spatial 
consistence of both temperature and precipitation 
fields, useful, for example, when generated series 
have to be spatially interpolated (to avoid inter-
station meteorological inconsistencies in the 
same area), but also when the physical (internal) 
consistency in both temperature and precipitation 
is important for a station, e.g. for water balance 
models or for agro-ecological simulations, which 
may require the simultaneous occurrence of 
particular conditions of rainfall and temperature. 
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(T0090, 204 m); Trento Laste (T0129, 312 m) – 
seep map at Fig. 2.
Fig. 6 illustrates the seasonal comparison of 
observed and generated distribution probability 
through a Q-Q plot representation for three rain 
gauges (T0083,T0090 and T0129). Most of the 
points lie on the bisect showing a good agreement 
between observed and generated distributions. 
An outlier occurs in DJF, where the maximum 
generated value is underestimated compared to 
observations. This is a consequence of having 
chosen the sample-based probability distribution. 
The length of the dry spells within each season is 
represented in Fig. 7 for the same stations of Fig. 
6. Most dry spells are no longer than 20 days and 
are well modelled by the precipitation generator. 
However, some biases occur in winter - and, to a 
lesser extent, in autumn - where dry spell durations 
are underestimated, whereas the fit is good in spring 
and very good in summer, when drought problems 
can be far more significant. Similarly, the number 
of monthly days with precipitation is represented 
in Fig. 8. 
A comparison of spatial coherence between 
observed and generated series is given by Fig. 9 and 
Fig. 10. In particular, Fig. 9 shows the scatterplot 
(generated vs observed) of the probability that 
precipitation simultaneously occurs or not for each 
couple of stations [p00k,m] or [p11k,m], respectively, 
for the three stations T0083, T0090, and T0129 – 
seep map at Fig. 2. The fit is quite satisfactory; this 
means that generated occurrence frequencies and 
correlations are well reproduced. However, in JJA 
the probability [p00k,m] is slightly underestimated, 
but this is coherent with the bias shown in the Q-Q 
plots (Fig. 8) of the number of wet days for JJA. To 
test the dependence between precipitation amount 
and occurrence, the observed and generated 
continuity ratio values (Wilks, 1998, Brissette et 
al., 2007, Zheng et al., 2010, Breinl et al., 2013) are 
represented in Fig. 10. The continuity ratio ranges 
from 0.2 to 0.6 in DJF and SON, in MAM and JJA 
may have higher values, reaching about 0.8 in JJA. 
The continuity ratio is a measure of spatial 
intermittency and results show a good dependence 
between precipitation amount and occurrence 
among the stations of the dataset; in particular, this 
metric is a ratio between two conditional expected 
values of precipitation at a site as a function of 
precipitation occurrence at another site; it is strongly 
affected by the choice of precipitation probability 
distribution and some errors could cause significant 
errors in its estimation. Nevertheless, similarly to 
the findings of Wilks (1998) and Brissette et al. 
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