Tools for stochastic weather series generation
in R environment
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Abstract: The “R” packages RMAWGEN and RGENERATEPREC aim to generate daily maximum and minimum
temperature and precipitation series preserving the meteorological coherence with observations, required for many
agro-ecological applications. The implemented methods are designed to work with existing tools implemented in the R
environment, such as vector autoregressive models (VAR) and other extensions of generalized linear models with logit
regression, for generation of daily precipitation series; one aim of the algorithm is the conservation of the temporal and
spatial correlations among variables. The internal parameters of the weather generator are calibrated from observed
time series. The article describes the main features of the presented packages and an application to a dataset of daily
weather time series recorded at 28 sites in Trentino (Italy) and its neighbourhood.
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Riassunto: pacchetti “R” RMAWGEN e RGENERATEPREC generano serie giomalier@ di temperature massime e
minime e precipitazioni preservando la coerenza meteorologica con le osservazioni, richiesta per molte applicazioni
agro-ecologiche. I metodi si avvalgono dell’'uso di librerie gia implementate in ambiente R, in particolare modelli
vettoriali auto regressivi (VAR), per mantenere le correlazioni temporali e spaziali tra le variabili, ed altre estensioni
di modelli generalizzati con regressione logistica, per la generazione delle serie di precipitazioni. Uno degli scopi
dell’algoritmo ¢ la conservazione della correlazione spaziale tra le variabili. I parametri interni dei weather generator
sono calibrati dalle serie osservate. L’articolo descrive le principali caratteristiche dei pacchetti presentati e le
applicazioni ad un archivio di serie meteorologiche giornaliere registrate in 28 siti in Trentino e regioni limitrofe.

Parole chiave: Generatori meteorologici stocastici multisito, auto-regressione vettoriale, regressione logit,

temperatura, precipitazione, clima.

1. INTRODUCTION

Stochastic generators of weather variables, called
“Weather Generators” (WGs), have been widely
developed in the recent decades for hydrological
and agro-ecological applications (Richardson,
1981, Racsko et al., 1991, Semenov and Barrow,
1997, Parlange and Katz, 2000, Liu et al., 2009,
Chen et al., 2012, Chen and Brissette, 2014).
Applications in agricultural meteorology require
the contemporary generation of series of more
than one quantity, at least temperature and
precipitation, and possibly more (Rocca et al.,
2012), e.g. for some pest modelling, or for water
balance modelling. A typical application of WGs is
the reproduction of daily weather time series from
downscaled monthly climate predictions (Mearns
et al., 2001, Wilks and Wilby, 1999, Qian et al.,
2002, Semenov and Stratonovitch, 2010). If high-
resolution application models are to be used with
downscaled series, a meteorological consistence
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of generated series is required, suggesting the use
of a multi-site weather generator. Algorithms to
represent historical spatial dependences of weather
variables have been developed e.g. by Wilks, 1998,
Khalili et al., 2009, Serinaldi, 2009, Bardossy and
Pegram, 2009, Kleiber et al., 2013. Wilks (1998)
simulated rainfall occurrences through a generation
of combinations of Gaussian random variables and
established a relationship for each pair of rain
gauges between Gaussian variables correlation and
binary (precipitation occurrence) values. In this
way, weather generators can reproduce at least
partially spatial correlations; this approach is widely
cited in literature (Mehrotra et al., 2006, Brissette
et al., 2007, Serinaldi, 2009, Thompson et al., 2007,
Mhanna and Bauwens, 2011, Kleiber et al., 2012).

Recently, statistical methods useful for weather
generation, originally developed in environmetrics
and econometrics, were made available in the R
platform (R Core Team, 2014). In this context,
a suite of two weather generator tools was
developed within the R environment through
the creation of two packages: RMAWGEN and
RGENERATEPREC. In particular, RMAWGEN
(R Multisite Auto-regressive Weather Generator
- Cordano and Eccel, 2011) was developed to
cope with the demand for high-resolution climatic
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scenarios but also to create a flexible tool for
engineers and researchers in agro-environmental
modelling. For this reason, RMAWGEN uses
existing R tools for vector auto-regressive models
(Pfaff, 2008b), employed for generation of weather
variables (Adenomon and Oyejola, 2013; Luguterah
et al., 2013; Shahin et al., 2014), and to let the
users work with other R spatio-temporal tools for
data analysis and visualization (Bivand et al., 2008;
Loecher and Berlin School of Economics and Law,
2012; Kahle and Wickham, 2013).

The paper is organized in the following sections: a
description of the mathematical methods applied
in the weather generators; the usage of the weather
generator with an example on a multi-site dataset,
including model validation through statistical tests;
and, finally, some concluding remarks.

2. METHODS
The following methods were utilized for generation
of daily temperature series:
* Vector Auto-Regressive models (VAR);
e Gaussianization of continuous variables;
while precipitation generation is based on:
e Single-Site Logistic Regression for
Precipitation
e Occurrence based on Generalized Linear
Models (GLMs);
* Multi-site generation of random values based
on Wilks” correlation matrix;
e Random Generation of Precipitation Amount
for each site using simultaneous precipitation
occurrences as predictors.

2.1 Vector Auto-Regressive models (VAR)
The basic idea of RMAWGEN consists on the
generation of daily precipitation and temperature
by using Vector Auto-Regressive Models (VARs).
A set of K random variables can be described by a
Vector Auto-Regressive Model VAR(K,p) as follows
(Liitkepohl, 2007; Hamilton, 1994; Pfaff, 2008a):

Xt=Al1Xt1+ ... + ApXtp+ Ut (1)

where x, is a K-dimensional vector representing
the set of weather variables generated at day t by
the model, called “endogenous” variables, A, is a
coefficient matrix K x K for i = 1...p and p is the
auto-regression order. In absence of exogenous
variables, u, is a standard white noise.

The methods to estimate the parameters of a
VAR model, as defined by equation (1), are
properly illustrated in Liitkepohl (2007). The
auto-regression order must be found before VAR
parameter estimation; some information criteria

were proposed to assess the best value of p (Akaike
and May, 1981; Hannan and Quinn, 1979; Schwarz,
1978; Liitkepohl, 2007). Pfaff (2008b) suggests four
indices: AIC(p), HQ(p), SC(p), FPE(p), where p is
the lag order. This information criteria to select the
optimal value of p are implemented in R package
“vars”, and then utilized by package “RMAWGEN”
and in the examples shown in this article. In
RMAWGEN, the implemented methods for VAR
parameters refer to the function VAR of “vars”
package (Pfaff, 2008b). Further theoretical details
about VAR models can be found in Liitkepohl
(2007), Hamilton (1994), and Pfaff (2008b).

2.2 VAR diagnostics

Once built the VAR(p) model and estimated its

coefficients, the model residuals can be processed

through diagnostic tests, which can be summarized
in the following, borrowed from econometrics

(Pfaff, 2008a):

* Multivariate Portmanteau and Breusch-Godfrey
(Lagrange Multiplier tests), which verify the
absence of time-autocorrelation of the VAR(p)
residuals;

e Jarque-Bera and multivariate skewness and
kurtosis tests, which validate the multivariate
Gaussian probability distribution of the VAR(p)
residuals;

* ARCH-LM tests, which verify the absence of
heteroskedasticity of the VAR(p) residuals.

The former verifies that the residuals, calculated by
instrumental time series, are not auto-correlated.
The second verifies that they are multi-normally
distributed, i.e., its skewness and kurtosis are null.
In case of stochastic generation, this condition
is generally satisfied because the random part
of the model is a white noise. The third test,
the ARCH-LM (Auto-Regressive Conditional
Heteroskedasticity - Lagrange Multiplier) test,
analyzes the covariance matrix or the variance
(in a univariate case) of residuals in order to
verify if the variance of residuals is constant or
if it varies with time, i.e. its homoskedasticity or
heteroskedasticity, respectively. Liitkepohl (2007)
proposed also an ARCH-Portmanteau test for
residual heteroskedasticity. Further details about
the tests can be found in the already quoted works
and in Pefia and Rodriguez (2002), and Mahdi and
Tan McLeod (2012).

2.3 Gaussianization of continuous variables
VAR models work correctly for normally distributed
variables. This requires a normalization procedure



for daily meteorological values of both temperature
and precipitation, which can be formally expressed
as:

xt =Gm(zt) (2)

where z, is the meteorological time series and
G,, is a univariate or multivariate function (so
that x, is multi-normally distributed and can vary
according to time, month, and season: subscript m
is an indicator of the month. G,, contains all the

information on the variable transformation and can
be inverted:

7t = Gm_l(Xt> (3)

In this case, the function G,, transforms a
meteorological variable, whose probability
distribution is different for each month, into a
random variable with equal probability distribution
for all months of the year. The function G,, resumes
the “climatic” properties of the m-th month and
is operationally determined and parameterized
according to the meteorological variable, by
sampling monthly the historical time series. This
function invokes a coordinate transformation which
is called “Gaussianization” (Erdogmus et al., 2006;
Laparra et al., 2009).

The one-dimensional Gaussianization is a
transformation from a random variable z, whose
cumulate probability distribution is F,(z), into a
Gaussian-distributed one x. It can be analytically
expressed as follows:

x = FG\(F,(z)) (4)

where F, is the Gaussian cumulative function with
zero mean and standard deviation equal to 1. If
F,(z) is an invertible function, the transformation
between x and y is also invertible:

z = F1(Fg(x)) (5)

Finally, the transformation between x and z is done
by applying the inverse cumulated probability
function of x and z, respectively, and vice versa. In
case z is a seasonally-changing weather variable,
the Gaussianization process can take into account
its dependency on month or season: in (2), G, is
defined as depending on month (Fig. 1).

Similarly to the one-dimensional case, it is
intuitive that an invertible function exists between
any multi-dimensional random variable and a
Gaussian variable with the same dimensions (Chen
and Gopinath, 2000). Nevertheless, an explicit
form of such a function is not as easy to find as
in the one-dimensional case and might require
high computational effort. Laparra et al. (2009)
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Fig. 1 - Monthly relationship between minimum daily tem-
perature (bimodal) and the transformed Gaussian series x
with the respective frequency histogram.

Fig. 1 - Relazione mensile tra la temperature minima gior-
naliera (bimodale) e la serie gaussiana trasformata x con i
rispettivi istogrammi di frequenza.

proposed an iterative method based on Principal
Component Analysis (PCA). This method is
organized in a loop where each iteration contains
the following steps:

1. One-dimensional Gaussianization of each
component ofx,ie., Marginal Gaussianization
(in this step, only the marginal probability
distributions are taken into account);

2. Orthonormal transformation of the
coordinates based on the eigenvector
matrix of the covariance matrix according to
Principal Component Analysis (PCA).

The variables become marginally Gaussian and
then, by rotation, the marginal Gaussianization is
calculated in the other directions of the variable
coordinate space. Later, Laparra et al. (2011)
generalized this transformation and called
it “Rotation-based Iterative Gaussianization
(RBIG) transform”, where the iterative process
can be coupled with other kinds of rotation like
Independent Component Analysis (ICA) or
Random Rotation (RND). The convergence of
these methods is explained in Laparra et al. (2011).
However, as suggested by Laparra et al. (2009),
in package RMAWGEN, the Gaussianization is
performed through PCA rotation (GPCA), because
of the lower computational burden and the
acceptable quality of results.
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2.4 Multi-dimensional Generation

of Precipitation

The marginal gaussianization of intermittent weather
values, e.g. in presence of zeros, as previously
described, does not take into account the inter-site
correlation: the zeros (no precipitation days) are
randomly Gaussianized and the Gaussianized value
cannot be affected a priori by the precipitation
occurrence at another site. If this aspect is not
dealt with, precipitation generated with simple
Gaussinized VAR models will lack information and
the inter-site correlation will be underestimated.
To fix this shortcoming, Wilks (1998) introduced
an algorithm to transform correlation of a
couple of binary values into correlation of the
corresponding Gaussian variables. This approach
is widely applied to the random generation of daily
precipitation occurrence. The dependence within
a rainfall gauge network is well known, especially
as concerns precipitation occurrence, whereas
the correlation in a VAR is strictly connected to
the continuous values, like precipitation depth.
As can be observed, precipitation occurrence is
better spatially correlated than the value of daily
precipitation depth.

In order to describe the correlation among
precipitation occurrences among several
sites, RGENERATEPREC was developed
on Wilks™ approach for the estimation of the
cross-correlations among raingauges and its
results compared with that of RMAWGEN.
RGENERATEPREC generates precipitation
occurrence and precipitation depth separately.
According to Wilks™ approach, daily precipitation
occurrence can be generated by generating
normally (Gaussian) distributed random numbers
as follows:

0 PG([X i]t) = [Poi]t
[Xi]t = <6)

1 PG([Xi]t) > [Poi]t

where [X{], is the binary state of precipitation
occurrence in the i site and on the t day: 0 (dry
day/no precipitation occurrence) or 1 (wet day/
precipitation occurrence); [p0;], is the probability of
no precipitation occurrence for the i site and the t
day; [x], is a normally distributed random variable
and P(x) is the cumulate probability function of the
normalized (Gaussian) distribution. In this work,
the probability value [p0,], is conditioned to the state
of the previous day(s) and other factors, namely it
is calculated by a logistic auto-regression with the
following predictors: (I) precipitation occurrence in

the previous day(s), and two exogenous variables:
(IT) daily maximum temperature anomalies (see next
section “Case study”), and (III) the day of the year. The
logit regression is implemented through a generalized
linear model (McCullagh and Nelder, 1989, Chambers
and Hastie, 1992), which generates time series of
daily precipitation occurrence probability similarly
to VAR implementation in package “vars”. Finally,
the probability value [p0i], is calculated singularly for
each site and is not conditioned to the precipitation
occurrence at the neighbouring sites.

The computation reported in RGENERATEPREC
makes use of an R implementation of the normal
copula (Yan, 2007, Kojadinovic and Yan, 2010) and
the marginal probability values p0, for each station
on a monthly base. Finally, precipitation amount in
the wet days is generated by inverting a parametric
probability distribution (Breinl et al., 2013, Furrer
and Katz, 2008, Li et al., 2012) or by inverting the
non-parametric frequency distribution obtained by
observations (Cordano, 2015a, 2015b).

3. CASE STUDY

3.1 Geographical description

and meteorological series

A dataset containing daily time series is included
in RMAWGEN dataset. The dataset, called
“trentino”, contains daily minimum and maximum
temperatures and precipitation form 1950 to
2007. The weather data had been recorded and
homogenized at 59 sites in Trentino region (North-
Eastern Italian Alps) and its neighbourhood (Eccel
etal., 2012).

The geography of the area is characterized by a
valley system, ranging between 70 m a.s.l. (Lake
Garda) to 3769 m (Mount Cevedale). The area
covered by the weather station network can be
ascribed to a Képpen class ranging from “Cfb”
(“temperate, middle latitudes climate, with no dry
season”) to “Dfc” classification (“microthermal
climate, humid all year round”) in the more
elevated, mountain areas. Precipitation amounts are
mostly distributed over two maxima, in the autumn
(main) and in the spring (secondary), although in
some mountain areas rainfall peaks in summer (Di
Piazza and Eccel, 2012).

The region is illustrated in Fig. 2, obtained by
package RgoogleMaps (Loecher and Berlin
School of Economics and Law, 2012) and easily
reproduced by the example script trentino_map.R
contained in RMAWGEN directory. In this
application, RMAWGEN model is calibrated for a
30-year long reference period from 1961 to 1990
and then utilized for a random generation of daily
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Fig. 2 - The weather stations of trentino dataset operating
in the period 1961-1990 with time series of daily precipita-
tion and temperature: (T) only temperature time series are
complete with no gaps; (P) only precipitation time series are
complete with no gaps; (A) both temperature and precipita-
tion time series are complete with no gaps.

Fig. 2 - Le stazioni meteorogiche del data set trentino fun-
zionanti nel periodo 1961-1990 con le serie temporali di
precipitazione giornaliera e temperatura: (T) solo le serie di
temperature sono complete; (P) solo le serie di precipitazi-
one sono complete senza lacune; (A) entrambe le serie sono
complete senza lacune.

precipitation and temperature for a 30-year long
period with the same climatic properties.

3.2. Temperature generation

3.2.1. Model setting

The daily minimum and maximum temperature
are generated for the reference period 1961-1990.
The new variable z, is pre-processed as a vector
of anomalies containing the observed mean daily
temperature anomaly and the observed daily
temperature range, and it is:

<Txt +Tn,
Z,= -
2 2
where Tx, and Tn, are the observed daily maximum
and minimum temperature, Tx,s, and Tn,s, are
the mean daily climatic values of maximum and
minimum temperature at each site; they are
the result of a daily spline interpolation from
the monthly values; and U is the vector-append
function. With this deseasonalization, z, is far from a
Gaussian distribution, but the constraint Tx, > Tn, is
always respected. Consequently, a Gaussian variable
is found through Gaussianization, as expressed in

Tx, s, + Tn,s,

)U(Txt— Tn,) (7)

(4), which samples the variable z, monthly at least at

the first iteration (eq. 2).

Once a time series vector is created for x, the

parameters of the GPCA-VAR or VAR model

are calibrated. Then, a normality test on VAR

residuals is required and residuals are subsequently

Gaussianized and normalized through GPCA if they

are not Gaussian.

To test the effectiveness of the PCA Gaussianization

and the optimal auto-regression order, four

different models for random generation were used:

* [PO1] auto-regression order p equal to 1, no PCA
Gaussianization;

e [P0O6] auto-regression order p equal to 6, no PCA
Gaussianization;

e [PO1GPCA] auto-regression order p equal to 1,
PCA Gaussianization;

* [PO6GPCA] auto-regression order p equal to 6,
PCA Gaussianization.

In all the four listed models the observed time
series were previously deseasonalized ad marginally
gaussianized. With function “VARselect” in package
“vars”, it is possible to test auto-regression order
from 1 to 20 days or more to find the optimal values
according to the information criteria; the value
of auto-regression order equal to 6 was selected,
according to the results of Akaike’s AIC criterion.

3.2.2. Results: model validation

As proposed by Pfaff (2008), Luetkepohl (2007),
Hamilton (1994) and other authors, the residuals
of four VAR models were tested for normality
and seriality (autocorrelation). The test results
(summarized in Tab. 1, where significance p-values
of 0.05 or higher give the same qualitative results)
indicate that both normality and serial tests are
successful in case of GPCA with autoregression
order p equal to 6 (PO6GPCA), which, therefore, can
be considered the best choice, among those tested.
Other cases yielded very low p-values, resulting
in unsuccessful verifications. The tests generally
highlight the importance of gaussianization pre-
processing of temperature.

Normality test Seriality test
PO1 unsuccessful unsuccessful
P06 unsuccessful unsuccessful
PO1GPCA successful unsuccessful
PO6GPCA successful successful

Tab. 1 - Results of normality and seriality tests for temperature.
Tab. 1 - Risultati dei test di normalita e serialita per la tem-
peratura.
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Fig. 3 - Q-Q plots for daily maximum (a) and minimum (b) temperature (generated vs observed) at station T0129 in the
four seasons.

Fig. 3 - Diagrammi Q-Q per le temperature massime e minime giornaliere (generate contro osservate) per la stazione T0129
nelle quattro stagioni.

The PCA-Gaussianized VAR model aims to preserve  between statistics of observed and modelled series.
the probability distribution and spatio-temporal ~ Fig. 3 shows the Quantile-Quantile plot (“Q-Q
correlation of the corresponding observed data.  plots”) between the generated and observed daily
Any comparison of daily values being meaningless, ~maximum and minimum temperature at station
due to the random generation, the validation of a  T0129 (see Fig. 3). “Q-Q plots™ are particularly
weather generator can only consist on comparisons  useful, showing distribution fittings between

a Auto-cross-correlation: daily maximum temperature anom. b Auto-cross-correlation: daily minimum temperature anom.
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Fig. 4 - Auto- and Cross-correlation for daily maximum (a) and minimum (b) temperature anomalies (generated vs ob-
served). Columns correspond to the four VAR models used in RMAWGEN generations. Rows correspond to the different
lags used for the computation of crosscorrelation: no lag (0 days), 1 day, 2 and days 7 days.

Fig. 4 - Auto- e cross-correlazione per le anomalie di temperatura massima e minima giornaliera (generate contro osservate).
Le colonne corrispondono ai quattro modelli VAR usati nelle generazioni di RMAWGEN. Le file corrispondono ai differenti
lag per il calcolo della correlazione: nessun lag (0 giorni), 1 giorno, 2 giorni e 7 giorni.



observed and generated series. The quantiles of
observed and simulated data are plotted for each
VAR model type and each season (Fig. 3). The
goodness-of-fit of observed versus generated daily
temperature is quite satisfactory: most of the points
appear along the quadrant bisector for all the four
considered VAR models.

Fig. 4 shows the autocorrelation and the cross-
correlation of temperature anomaly (observed
or simulated daily value rescaled to the typical
climate value, spline-interpolated by monthly
climatology) referred to each couple of stations and
for four different lags expressed in days: 0 (cross-
correlation), 1, 2, and 7 days. The correlations
are plotted with respect to both maximum and
minimum daily temperature and are calculated
for each of the implemented VAR models. The

coefficients obtained from both observed and
generated time series are very similar and stay on the
quadrant bisect, especially in case of simultaneous
correlation (lag 0) and one-day autocorrelations,
and range between 0.6 and 1.0. As expected, a less
good agreement is found after a 7-day lag, in the
cases with p=1 (P01 and PO1GPCA); nevertheless,
correlations are lower (less than 0.25), and become
less significant.

3.3 Precipitation generation

3.3.1 Model setting

Daily precipitation is separately generated for the
reference period 1961-1990. through a random
generation with an auto-regression based on
generalized linear models (Chambers and Hastie,
1992) implemented in the RGENERATEPREC

Daily precipitation depth
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Fig. 5 - Monthly boxplots of fitting Kolmogorov — Smirnov’s tests (generated vs. measured series).
Fig. 5 - Boxplots mensili dei test di adattamento di Kolmogorov — Smirnov (serie generate contro misurate).
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package for a single site and following Wilks’
approach for spatial (inter-station) correlations.
After generation of precipitation occurrences,
Gaussianized precipitation is calculated through
a simple linear regression of occurrences making
use of the observed frequency distribution with
the addition of a random white noise. Finally,
precipitation depth is obtained through an inverse
Gaussianization with the use of the monthly
non-parametric distribution from the observed
samples.

3.3.2 Results: model validation
The following quantities are considered at each station
in the different months and seasons of the year:
* precipitation depth (Fig. 6);
e dry spells (Fig. 7);
* monthly number of days with precipitation for
each station (Fig. 8);
e probability that no daily precipitation occurs
at each station or at each pair of stations
(Mhanna and Bauwens, 2011):

[pOO k,m]l

where k and m are two generic station indicators, t
is the day indicator, | is a time lag, P[(X,), = 0] is the
probability that no precipitation occurs at station

= P[(Xy), =0NP(X,),,=0] (8)

k, [p00, ] is the probability that no precipitation
occurs at both station k and m after a time lag of 1

days (Fig. 9a);
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Fig. 7 - Q-Q plots for dry spell length [days] (generated vs ob-
served) at stations T0083, TO090 and T0129 in the four seasons.
Fig. 7 - Diagrammi Q-Q per la durata dei periodi asciutti
[giorni] (generate contro osservate) per le stazioni TO0S3,
T0090 e T0129 nelle quattro stagioni.
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Fig. 6 - Q-Q plots for daily precipitation depth [mm] (gen-
erated vs observed) at stations T0083, T0090 and T0129 in
the four seasons.

Fig. 6 - Diagrammi Q-Q per laltezza di precipitazione [mm]
(generate contro osservata) per le stazioni TO083, T0090 e
T0129 nelle quattro stagioni.

Fig. 8 - Q-Q plots for number of “wet” days per month
(generated vs observed) at stations T0083,T0090 and T0129
in the four seasons.

Fig. 8 - Diagrammi Q-Q per il numero di giorni piovosi
(generati contro osservati) per le stazioni T0083, T0090 ¢
T0129 nelle quattro stagioni.



e probability that daily precipitation occurs
at each station or at each pair of stations
(Mhanna and Bauwens, 2011):

[p11 ] = P[(X ), =1 NP(X,,)t1=1] (9)

where, similarly, P[(X,), = 1] is the probability that
precipitation occurs at station k, [pl1,,,]; is the
probability that precipitation occurs at both stations
k and m after a time lag of 1 days (Fig. 9b);

* continuity ratio (Wilks, 1998):

K = E{(hk)t | [(hk)t >0N (hm)t = 0]}
" E{hy), [[(hy), > 0N (h,,), > 0]}

where C,,, is the ratio between the expected
value of precipitation amount at the station k (hy),,
conditioned to the precipitation absence at station
m on the same day, and the same expected value of
precipitation amount at station k, but conditioned
to precipitation occurrence at station m (Fig. 10).

The first three items are related to the validation

(10)
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Fig. 9 - Probability that no precipitation occurs (a) or pre-
cipitation occurs (b) in each couple of stations (generated vs
observed) at stations T0083, TO090 and T0129 in the four
seasons.

Fig. 9 - Probabilita di non occorrenza di precipitazioni (a) o
di occorrenza di precipitazioni (b) in ogni coppia di stazioni
(generate contro osservate) alle stazioni TO083, TO090 e
T0129 nelle quattro stagioni.
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Fig. 10 - Continuity Ratio for each couple of stations (gen-
erated vs observed) at T0083, T0090 and T0129 in the four
seasons.

Fig. 10 - Rapporto di continuita per ogni coppia di stazi-
oni (generati contro osservati) alle stazioni T0083, T0090 e
T0129 nelle quattro stagioni.

of the single-site generation, while the others refer
to the comprehensive multi-site generation. The
model skill is assessed by testing the goodness of
distribution fitting of the generated series to the
measured ones by means of Kolmogorov — Smirnov
(ks) tests. In order to represent an aggregated set of
results, the p-values of ks tests are given as monthly
boxplots for four variables: daily precipitation
depth, number of days with precipitation, dry
spell duration, and wet spell duration (Fig. 5). All
values exceeding the significance level chosen as
a benchmark (e.g. 0.05) assess that the hypothesis
that the two samples come from the same
distribution cannot be excluded. For every one of
the four variables, every element of the statistics
(e.g., one of the outliers in the boxplot) represents
one station for the specific month. It can be seen
that the cases which fall below the acceptance level
are very few.

Results can be visually assessed by comparing
observed and simulated values for each index.
In this case, we chose three stations chosen at
random: Cles (T0083, 652 m); Mezzolombardo
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(T0090, 204 m); Trento Laste (T0129, 312 m) —
seep map at Fig. 2.

Fig. 6 illustrates the seasonal comparison of
observed and generated distribution probability
through a Q-Q plot representation for three rain
gauges (T0083,T0090 and T0129). Most of the
points lie on the bisect showing a good agreement
between observed and generated distributions.
An outlier occurs in DJF, where the maximum
generated value is underestimated compared to
observations. This is a consequence of having
chosen the sample-based probability distribution.
The length of the dry spells within each season is
represented in Fig. 7 for the same stations of Fig.
6. Most dry spells are no longer than 20 days and
are well modelled by the precipitation generator.
However, some biases occur in winter - and, to a
lesser extent, in autumn - where dry spell durations
are underestimated, whereas the fit is good in spring
and very good in summer, when drought problems
can be far more significant. Similarly, the number
of monthly days with precipitation is represented
in Fig. 8.

A comparison of spatial coherence between
observed and generated series is given by Fig. 9 and
Fig. 10. In particular, Fig. 9 shows the scatterplot
(generated vs observed) of the probability that
precipitation simultaneously occurs or not for each
couple of stations [p00, ] or [p11,,], respectively,
for the three stations T0083, T0090, and T0129 —
seep map at Fig. 2. The fit is quite satisfactory; this
means that generated occurrence frequencies and
correlations are well reproduced. However, in JJA
the probability [p00,,,] is slightly underestimated,
but this is coherent with the bias shown in the Q-Q
plots (Fig. 8) of the number of wet days for JJA. To
test the dependence between precipitation amount
and occurrence, the observed and generated
continuity ratio values (Wilks, 1998, Brissette et
al., 2007, Zheng et al., 2010, Breinl et al., 2013) are
represented in Fig. 10. The continuity ratio ranges
from 0.2 to 0.6 in DJF and SON, in MAM and JJA
may have higher values, reaching about 0.8 in JJA.
The continuity ratio is a measure of spatial
intermittency and results show a good dependence
between precipitation amount and occurrence
among the stations of the dataset; in particular, this
metric is a ratio between two conditional expected
values of precipitation at a site as a function of
precipitation occurrence at another site; it is strongly
affected by the choice of precipitation probability
distribution and some errors could cause significant
errors in its estimation. Nevertheless, similarly to
the findings of Wilks (1998) and Brissette et al.

(2007), the application of RGENERATEPREC
produces continuity ratios mostly centred around
the bisect of the plot, showing a good correlation
between precipitation amount and occurrence
among the stations of the dataset.

4. CONCLUSIONS

The goal of this paper was to present new algorithms
for stochastic generation of daily temperature and
precipitation fields, implemented within a flexible,
open source, analytical and statistical environment
like R, in the form of new libraries. Software
packages have been made freely available on CRAN
repository (R Core Team, 2014). RMAWGEN
carries out generations of weather series through
Vector Auto-regressive Models; the latter work
generally well for time-continuous variables, but
present some critical issues for intermittent weather
variables like precipitation. The problem can be
tackled by considering the additional package
RGENERATEPREC, developed to extend the
methods applied in RMAWGEN to other models,
where stochastic weather generations follow
different algorithms.

The use of PCA Gaussianization is implemented to
preserve the complete dependence structure, not
only the correlation. It is reminded that the marginal
Gaussianization of observed weather variables at a
monthly scale means that RMAWGEN approach
is independent of the statistical distribution of
variables, and random weather time series can be
regenerated with the same empirical probability
distribution of the observed ones or with another
distribution, assigned a priori.

RMAWGEN and RGENERATEPREC can be
used separately or also jointly, if the conservation of
the statistical links between their output is wanted.
This is the case of an eventual use of the generated
fields for model applications that require the spatial
consistence of both temperature and precipitation
fields, useful, for example, when generated series
have to be spatially interpolated (to avoid inter-
station meteorological inconsistencies in the
same area), but also when the physical (internal)
consistency in both temperature and precipitation
is important for a station, e.g. for water balance
models or for agro-ecological simulations, which
may require the simultaneous occurrence of
particular conditions of rainfall and temperature.
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